
FUNSE Hau

Vereinigt mit dem Radio-Magazin

MAIT FERNSEH-TECHNIK, SCHALLPLATTE UND TONBAND

Henthkit die weltbekannten MESS- UND PRÜFGERÄTE

V-7A ROHRENVOLTMETER

Messbereiche: 0 --- 1,5/5/15/150 1500 Veff 0 --- 4/14/140/400/1400/4000 Vss 0.1 1000 MΩ (in 7 Stufen) Frequenzgang: 42 Hz · · · 7 MHz Eingangswdst.: 11 MΩ

> DM 209.- als Bausatz DM 249. - betriebsfertig

KAPAZITÄTSPRUFER

Messbereich: 50 pF · · · 20 mF Frequenzi 50 Hz und 19 MHz

UNIVERSAL-OSZILLOGRAPH

Y - 4 Hz ... 1,2 MHz; 100 m Vss/cm; 2 M & X - 2 Hz - 425 kHz; 280 m Vss/cm; 10 MΩ Kippteil - 20 Hz · · · 150 kHz Schirm - 130 mm o

DM 399. als Bausatz DM 479.- betriebsfertig

AG-9A RC-GENERATOR

Frequenzbereich: 10 Hz --- 100 kHz Ausaanasspannuna 3/10/30/100/300/ mV 1/3/10 Veff

> DM 289.- als Bausatz DM 329. - betriebsfertig

AYSTROM ELEKTRO

FRANKFURT/M., FRIEDENSSTR. 8-10, TEL. 21522/25122

IHR WISSEN = IHR KAPITAL!

Radio- und Fernsehfachleute werden immer dringender gesucht:

Unsere seit Jahren bestens bewährten

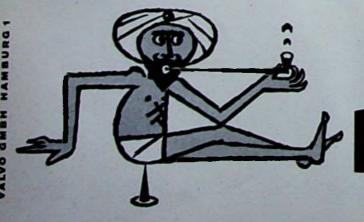
RADIO- UND FERNSEH-FERNKURSE

mit Abschlußbestätigung, Aufgabenkorrektur und Betreuung verhelfen Ihnen zum sicheren Vorwärtskommen im Beruf. Getrennte Kurse für Anfänger und Fortgeschrittene sowie Radio-Praktikum und Sonderlehrbriefe.

Ausführliche Prospekte kostenlos.

Fernunterricht für Radiotechnik Ing. HEINZ RICHTER

GUNTERING, POST HECHENDORF, PILSENSEE/OBB.


Höhere Wünsche. bessere Tonaufnahmen, erfüllt

das neue dreimotorige MTG 9-57, das professionelle Gerät in der Amateurpreisklasse
und wußten Sie schon, daß ausländische Rundfunkliche Institute dieser Type ausgerüstet werden? Daß auch wissenschaftliche Institute diese Maschine bevorzugen? Daß entgegen anderer Behauptungen das System der VOLLMER-Studio-Maschinen in fast allen deutschen
und vielen ausländischen Sendegesellschaften schon über zehn Jahre
bestens eingeführt ist?
Kennen Sie die Waltere

Kennen Sie die VOLLMER-Maschinen, wie sie vom Rundfunk verwendet werden? Nein, dann erhalten Sie kostenlos Prospekte von

EBERHARD VOLLMER PLOCHINGEN A. N.

punktscharf

VALVO Fernsehbildröhren

1010

Die Favoriten der Saison:

MIRASTAR S 12 Spielerkoffer Stereo mit ELAC KST 100

DM 99.50 DM 114.50

MIRASTAR S 12 V Stereo

DM 249 .-

Spieler - Verstärkerkoffer, mit ELAC KST 100, in Verbindung mit einem Radiogerät eindrucksvoller Stereo-Effekt ohne zusätzlichen techn. Aufwand

MIRASTAR W 9 Wechslerkoffer Stereo mit ELAC KST 100

DM 174.-DM 190 .-

MIRASTAR W 9 V Stereo

DM 329,-

Wechsler-Verstärkerkoffer mit ELAC KST 100, in Verbindung mit einem Radiogerät eindrucksvoller Stereo-Effekt ohne zusätzlichen techn. Aufwand

Die ELAC-Geräte in Stereo-Ausführung, ausgestattet mit dem universellen Stereo-Kristall-System ELAC KST 100, erfüllen die Forderungen unserer Zeit. Sie bieten sowohl das moderne Stereo-Klangbild wie auch die Möglichkeit, die monauralen Normal- und Mikrorillenplatten erklingen zu lassen. Das neue ELAC KST 100 tastet alle Schallplatten ab, ohne daß System oder Tonarmköpfe ausgewechselt zu werden brauchen. Alle Erfordernisse der stereophonischen Tonwiedergabe sind erfüllt: Niedrige Auflagekräfte und gunstige Intermodulation durch weitgehend richtungsunabhängige

Bitte besonders beachten: Den technischen Fortschritt im ELAC-Phono-Programm bringt der neue Name der ELAC-Phonokoffer zum Ausdruck:

MIRASTAR

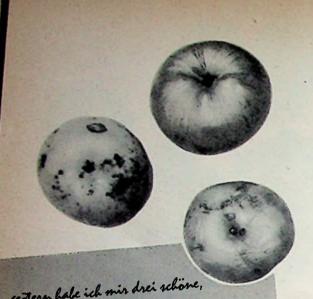
In unserem vielfältigen Phono-Programm gibt es för jeden Ihrer Kunden das Richtige. Die aufgeführten Typen sind nur ein Teil unseres Programms. Über das gesamte Programm informiert Sie der neue Sammelprospekt Nr. 735 und die Preisliste Nr. 733.

Die Stereo-Hi-Fi-Geräte der -Goldenen Serie" mit dem elektro-magnetischen Stereo-System ELAC STS 200 bieten dem kritischen Liebhaber klangvollendeten Musikgenuß

MIRAPHON 210

DM 190,-

Spieler-Laufwerk für Stereo- und Mikrorillenplatten MIRACORD 200


DM 290,-*

Wechsler-Laufwerk für Stereo- und Mikrorillenplatten

 Mehrpreis für Diamantnadel anstelle des Saphirs DM 38.-(Abbildungen, links, von oben: MIRASTAR S 12, MIRASTAR W 9 rechts: MIRACORD 200

ELEKTROACUSTIC GMBH - KIEL

. gestern habe ich mir drei schöne, grosse Äffel in meine Schreibtischlade gelegt -Schiller roll doch damit so gute Erfolge gebatt balen - mir aber it nichts einzefallen. Olwohl ich gerade für diese Anzeige eine gute Idee gebraucht hätte. Wiero kam ich eigentlich auf Schiller? - Ach richtig - wegen der Affel! Die waren fast so freiswert. wie die Elektronenröhren bei BÜRKLIN in der Schillertrane. Sie wollten doch auch noch Röbren bestellen - also bitte am besten gleich bei:

> Rundfunkröhren Spezialröhren Dioden - Transistoren Elektrolyt-Kondensatoren Tauchwickel-Kondensatoren Rundfunk- und Fernseh-Gleichrichter

UKW- und Fernseh-Antennen Tonbänder

Im selben Hous mit neuer Nummer

MUNCHEN 15 · SCHILLERSTR. 7 · TEL. *555083

Lieferung grundsätzlich nur an den Fachhandel!

Monarch Manarch

immer mehr interessenten fragen nach dem "Monarch", dem ausgezeichneten Plattenwechsler mit vier Drehzahlen. Das Gerät steht bei Musik-Liebhabern, die wirklichkeitsnahe Tonwiedergabe

Die Typen UA 8 und UA 12 sind für Stereo-Wiedergabe geeignet.

Die Monarch-Wechsler sind mit ful-fi-Tanköpfen ausgestattet. Diese vervollkommnen jedes Phonogerat.

... und STEREOPHONIC ful-fe

Das erste Kristall-Tonabnehmersystem der Welt für Stereo-, Langspiel- und Normalplatten-Wiedergabe. Ihre Kunden werden den Qualitäts-Unterschied hören, wenn sie ful-fi verwenden.

Generalvertretung für Deutschland:

GEORGE SMITH GMBH . Frankfurt/Main Großer Kornmarkt 3-5, Telefon 23549/23649

BIRMINGHAM SOUND REPRODUCERS LTD., OLD HILL, STAFFS., ENGLAND

Heft 22 / FUNKS CHAU 1958

prüfen und sortieren

mit den GOSSEN-Testern

Transistor-Tester

für PNP und NPN Kleintransistoren

bis ca. 100 mW Collectorverlustleistung

Prüfung von Stromverstärkung Beta: 0... 100fach

und 0 . . . 200fach

Collectorreststrom J'co

 $0...1000 \mu A$

Gerät für Batteriebetrieb,

eingebaute Taschenlampenbatterie 4,5 V

Leistungstransistor-Tester

für Leistungstransistoren

mit ca. 1...15 W Collectorverlustleistung

Prüfung von Stromverstärkung Beta: 0...100fach

0 ... 200fach

Collectorreststrom J'co

0... 20 mA

Gerät für Netzanschluß 220 V∼

Bitte, fordern Sie unsere Prospekte an.

P. Gossen & Co · GmbH · Erlangen

LOEWE © OPTA

Automatic

Arena" Das Großbild-Gerät (53 cm)
mit internationaler Fernsehtechnik.
Bildpeiler-Abstimmung und
universelle Synchro-AutomaticSchaltung für vollautomatische
Zeilenkonstanz.

DM 1068.-

LOEWE © OPTA

35 JAHRE
WELTRUF

Sie wird von allen bewundert die bildsehöne

Solovette 2

mit Tonarm-Aufsetztaste

der wertvollen Hilfe zum sicheren, schnellen Aufsetzen des Tonarms auf die Platte.

Nur die **Wumo-Solorette-2** besitzt eine Tonarmaufsetztaste u. ist selbstverständlich auch für **Stereo-Wiedergabe**, also echte Raumtonmusik eingerichtet.

Verlangen Sie bitte den Prospekt PS 2.

WUMO-APPARATEBAU GMBH
Stuttgart-Zuffenhausen 1908-1958

KURZ UND ULTRAKURZ

Des millionste Fernschgerät dieses Jahres wurde im Oktober in einer der olwa 20 deutschen Fernsehgeräte-Fabriken gebaut. Damit hat diese Industrie zum erstenmal seit Beginn des Fernschens die Millionengrenze in der Jahres-produktion von Fernsehgeräten erreicht. Die Gesamtproduktion 1957 lag bei 808 000 Empfängern. Der Monat September, für den jetzt die endgültigen Produktionszahlen vorliegen, brachte mit 172 000 Fernschgeräten ebenfalls einen Rekord, denn in den übrigen Monaten dieses Jahres wurden jeweils nur 85 000 bis 118 000 Geräte hergestellt. Insgesamt wurden von Januar bis ein-schließlich September 1958 rund 975 000 Fernsehgeräte fabriziert, in der gleithen Zeit des Vorjahres waren es nur 528 000. Der entsprechende Produktionswert beträgt 565 Millionen DM bzw. 300 Millionen DM.

Die letzten Jahre haben gezeigt, daß die deutschen Fernsehgeräte-Fabriken im Hinblick auf das Weihnachtsgeschäft im letzten Quartal eines jeden Jahres den höchsten Ausstoß hatten. In diesem Jahr wird es nicht anders sein. Der September mit einer Produktion von 172 000 Fernsehgeräten war bereits der Auftakt dazu und es ist damit zu rechnen, daß die für 1958 geschätzte Gesamtproduktion von 1.4 Millionen Geräten am Jahresende auch erreicht wird. Noch ein Blick auf die Rundfunkgeräte: Mit 2,74 Mill. Empfängern aller Art einschließlich der Musikschränke liegt die Produktion von Januar bis einschließlich September 1958 nur um 30 000 Stück unter dem Vergleichszeitraum des Vorjahres. Die entsprechenden Produktionswerte betragen 493 Millionen bzw. 540 Millionen DM.

UHf-Fernsehsender Aachen-Stolberg und Lingen. Der neue UHf-Fernschsender Aachen-Stolberg des Westdeutschen Rundfunks wurde am 28. Oktober zum ersten Male probeweise für die Abnahme eingeschaltet. Er arbeitet mit einer eff. Strahlungsleistung von 5 kW (Bild) bzw. 1 kW (Ton) in Kanal 14 = 486...494 MHz. - Der erste reguläre UHf-Fernschsender des Nord-deutschen Rundfunks wird zur Zeit in Lingen/Ems montiert und dürfte bis Welhnachten in Betrieb sein. Bei einer Ausgangsleistung von 1 kW [Bild] und 0.2 kW (Ton) soll die von Rohde & Schwarz erstellte Anlage in Kanal 15 = 494...502 MHz in die beiden Vorzugsstrahlrichtungen Lingen und Nordhorn mit 10/2 kW effektiv strahlen.

Bildröhren mit transparentem Schirm. Sylvania (USA) liefert jetzt eine Versuchsserie kleiner Bild- bzw. Oszillografenröhren, deren 12,7-cm-Schirm mit einer aufgedampften, sehr dünnen Phosphorschicht versehen ist. Das von außen auf den Schirm auftreffende Fremdlicht tritt ungehindert hindurch und erzeugt keine Reslexe; es wird im geschwärzten Innenkolben vernichtet. Auch sind die Reslexerscheinungen der Phosphorkristalle untereinander geringer als bei den bisher gesertigten Bild- und Oszillografenröhren, so daß die Bildschärfe besser ist. Gleichmäßigere Lichtabgabe der Schirmteilchen und insgesamt ein besserer Kontrast zelchnen den neuen Schirm aus.

Siemens baut Großfunkstellen. Siemens lieferte vor kurzem der ägyptischen Regierung eine der größten Funkstationen im Mittleren und Nahen Osten. Auf einem 30 km von Kairo entfernten, 4 qkm großen Wüstengelände stehen umfangreiche Rund- und Richtstrahlantonnen sowie die Gebäude mit ins-gesamt vierundzwanzig Kurzwellensendern zwischen 1 und 30 kW Loistung. Im gleichen Gebiet installiert Siemens überdies eine Kurzwellen-Großrund-

320 000 Farbfernschempfänger in den USA. Einer unabhängigen Untersuchung zufolge waren am 1. Juli innerhalb der USA nur 320 000 Farbfernschgeräte in Betrieb; die National Broadcasting Co. bringt als einzige Programmgesellschaft täglich ein kurzes Farbfernschprogramm, während alle anderen Programmgesellschaften teils keine, teils nur jeweils wenige Wochen hindurch Farbprogramme senden.

Wie der Süddeutsche Rundfunk in einer Umfrage feststellt, besitzen in seinem Sendebereich 27 % aller Rundfunkteilnehmer auch einen Plattenspieler. * Die Fernschsender Stuttgart, Aalen und Pforzheim des SDR senden bis Jahresende ihr Testbild werktägig ohne Pause von 9 Uhr bis zum Beginn des Nachmittagsprogrammes. * Der UKW-Sender Haardikopf I des SWF ändert seine Frequenz von 93,6 auf 98,4 MHz. * Einer neueren Zählung zufolge gibt es auf der ganzen Welt 1140 Fernsehsender und etwa 72,5 Millionen Fernschteilnehmer. * In den USA werden jetzt jährlich etwa 60 000 Druckselten russischer Fachliteratur übersetzt, darunter 53 vollständige russische Fachzeitschriften. * Bei der Wiedergabe von Pierre Boulez Tonwerk "Poésie pour pouvoir" für drei Orchester und elektronische Musik auf den Donaueschinger Musiktagen rotterten spiralförmig Lautsprecherkombinationen; sie wurden von einem neuen Telefunken-Achtspur-Magnetophon gespeist. * Siemens baute kürzlich auf dem 2 200 m hohen Patscherkofel, südlich von Innsbruck, einen in Band I arbeitenden Fernsehsender mit 3,5'0,8 kW für den österreichischen Rundfunk. * Die japanische Firms Tokyo Shibaura Electric Co. bringt Langspielplatten heraus, die sich nicht mehr statisch aufladen. * Am 3. Oktober nahm in Teheran (Iran) der erste Fernsehsender des Landes seine Tätigkeit auf. Er wurde von der amerikanischen Regierung zur Verfügung gestellt und arbeitet mit der 525-Zeilen-Norm. * Der Louchtsleck einer neuen 13-cm-Elektronenstrahlröhre von DuMont (USA) hat einen Durchmesser von nur noch 25 μ. * Die Postverwaltungen Usterreichs und Ungarns werden gemeinsam eine Fernsoh-Richtfunkstrecke zwischen Wien (Endstelle auf dem Anninger, 674 m Meereshöhe) und Budapest errichten. * Radio Bremen plant einen Fernseh-Umsetzer auf dem Wasserturm in Wulsdorf bei Bremerhaven zu bauen, so daß der bisher teilweise unbefriedigende Fernsehemplang in diesem Gebiet besser wird. * Telefunken montiert z. Z. in Langenberg einen neuen Fernsehsender mit 100/20 kW off. Strahlungsleistung. Nunmehr stehen in diesem Sonderzentrum einschließlich der BFN-Station insgesamt zehn Rundfunk- und Fernsehsender.

Unser Titelbild: Auch das ist ein Empfänger-Oszillator, und zwar zeigt das Schnittmodell den Mikrowellen-Oszillator einer impulsmodulierten Richtstrahl-Anlage der Firma Brown Boveri. Koaxial- und Hohlieitertechnik sind kennzeichnend für diese Geräte.

noch zur Hand von HENINGER im Schnellversand ENINGER im Schneliversand Röhren SCHNELLER Um den Alltag zu bestehen

muß man sich im Spiegel drehen und dann sieht man plötzlich ein: Imponierend muß man sein! Dem Kunden aber imponiert wer schnell und besser repariert!

Röhren SCHNELLER noch zur Hand von HENINGER im Schnellversand! *

aemeint ist:

der Röhren-Schnellversand für den fortschrittlichen Radiofachmann

SCHNELLER noch

E-HENINGER

Wir liefern u.a.

Deutsche Markenröhren Europäische und amerikanische Importröhren NSF-Elektrolytkondensatoren im Alleinversand

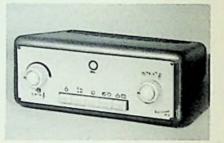
MÜNCHEN 12 · LANDSBERGER STR. 87

FERNSPRECH-SAMMELNUMMER: 591221

als erste deutsche Firma zur Hannover-Messe 1958 ausgereifte Konstruktionen von

STEREO-Verstärkern

zeigte, gingen bisher von der gesamten Produktion dieser Geräte allein 72°/o in viele Länder der Welt!


Ein imposanter Beweis internationaler Konkurrenzfähigkeit auf dem Stereo-Gebiet!

Synacord - Transistoren-Handhörgerät (für Batterie 3 V) TS. Mono-Stereo, mit eingebautem Verstärker, Lautstärke- und Tonregelung und dyn. Hörer (für Mono) und zusätzlichem Stereohörer. Direktes Abhörgerät für Plattenabspielgeräte, Musikbars usw. (DBPa) DM 196 .- br.

Aynacord - 6 Watt-Kassettenverstärker Mono-Stereo ST3. Aufstell-und Einbaugerät mit Drucktasten, auch zum nachträglichen Einbau in Musikschränke, Vitrinen usw. geeignet. 5 Eingänge, Bal.-Regler, Höhen- und Tiefenregelung

DM 218.- br.

Synacord -12 Watt-Tischverstärker Mono-Stereo ST 6 für transportable und stationäre Zwecke; Seiten- und Phasenlage der Lautsprecher umschaltbar, Balance-Regler, H+T-Regler, Eingangs-Umschalter für 5 Eingänge

DM 295 .- br.

Synacord - Drucktasten-Steuerteil mit Hi-Fi-Vorverstärker VVS, ständig sichtbarer Frequenzverlauf, opt.-elektr. gesteuerte Kanal-Balance-Anzeige, von jedem Laien sofort einstell- und bedienbar (DBPa) DM 258.- br.

Beliebig kombinierbar

mit nachstehenden Hi-Fi-Stereo-Endstufen verschiedener Leistungen:

 $2\times 8 = 16$ Watt, Typ LS 8 DM 258 .- br. $2\times15=30$ Watt, Typ LS 15 DM 365.- br. $2 \times 25 = 50 \text{ Watt, Typ LS 25}$ DM 520.- br.

Synacord -Phono-Stereo-Verstärker mit jeweils auf die Raumverhältnisse sofort einstellbaren Schwenklautsprechern (DBPa). Bei mon. Abspielung als Raum-Preis nach Leistung. ton-Wiedergabegerät arbeitend.

Also auch in der STEREO-Technik bietet Ihnen wiederum

ein einmaliges Geräte-Programm für Alle und Alles!

Jetzt: STRAUBING/DONAU, Siemensstraße

Der Franzis-Verlag teilt mit

1. Auch in diesem Jahr machen wir den FUNKSCHAU-Lesern ein nun schon traditionelles Weihnachts-Sonderangebot für Franzis-Fachbücher. Bitte warten Sie die Beilags im nächsten Heft der FUNKSCHAU ab! Sie informiert Sie über alle Einzelheiten und bietet ihnen eine praktische Bestellkarte. Bezug zu den Bedingungen unseres Weihnachts-Angebotes ist durch die Buch- und Fachhandlungen und auf Wunsch auch vom Verlag möglich.

2. Die RADIO-PRAKTIKER-BÜCHEREI wurde in den letzten Monaten weitgehend komplettiert, so daß jetzt wieder sämtliche Nummern — mit wenigen Ausnahmen — lieferbar sind; zahlreiche Bände erschienen 1958 in neuen Auflagen. In der letzten FUNKSCHAU (Heft 21) veröffentlichten wir auf Seite 1010 des hinteren Anzeigenteils ein ausführliches RPB-Verzeichnis nach neuestem Stand; wir bitten, sich dieses Verzeichnisses bei Bestellungen zu bedienen. Vergriffen sind zur Zeit die Nummern 1, 5, 18/19, 34, 39/40 und 52/54a. Von ihnen befindet sich Nr. 1 unter dem Titel "Moderne Endröhren und ihre Schaltungen" bereits im Druck; dieses Heft wurde also von dem technisch nicht mehr zeitgemäßen Thema der Außenkontaktröhren auf die neuzeitlichen Endröhren umgestellt. Im Druck ist außerdem Nr. 52/54a; dieses Buch wurde stark erweitert und in zahlreichen Kapiteln völlig neu geschrieben, so daß hier ein Taschen-Kompendium der Fernschempfangs-Praxis modernster Prägung im Entstehen begriffen ist. Mit dem Erscheinen von Nr. 5 und 18/19 ist vorerst nicht zu rechnen, dagegen wird Nr. 39/40 im nächsten Jahr neu bearbeitet herauskommen.

3. Das von vielen Seiten sehr erwartete große Fachbuch von Ingenieur Otto Diciol "Niederfrequenzverstärker-Praktikum" (rund 400 Seiten, 183 Bilder, in Ganzleinen 29.80 DM) befindet sich im Druck; die Lieferung ist uns für den 10. Dezember in Aussicht gestellt, so daß wir Vorbestellungen sowie solche Aufträge, die wir auf Grund des Weihnachts-Sonderangebotes erhalten, kurz vor dem Fest ausliefern können. Wer das Buch noch zu Weihnachten zu erhalten wünscht, sollte es sofort bestellen, damit die Lieferung gewährleistet ist. Wer es von einer Buchhandlung oder Buchverkaufsstelle geliefert haben möchte, sollte veranlassen, daß seine Bestellung ohne Verzögerung an uns weitergegeben wird.

4. Ein sehr praktisches Weihnachtsgeschenk für jeden Besitzer eines Tonbandgerätes ist das Buch "Der Tonband-Amateur" aus seiner kürzlich erschlenenen 4. Auflage. Sie ist so stark erweitert (von 116 auf 176 Seiten, von 43 auf 78 Bilder), großenteils neu geschrieben, mit erstmals aufgenommenen wichtigen Kapiteln ausgestattet, daß die neue Ausgabe mit den vorhergehenden kaum etwas zu tun hat. Vor allem trat die technische Seite dieses Themas stärker hervor, so daß das Buch gerade für den FUNKSCHAU-Leser, der sich mit der Tonbandaufnahme beschäftigt, wertvoller geworden ist. Das Buch wurde diesmal auf Kunstdruckpapier gedruckt; es kostet 7.90 DM.

5. In letzter Zeit haben die Anfragen, die unsere Redaktion auf dem Gebiet der Berufsausbildung erhielt, sehr zugenommen. Wir wollen deshalb auf die beiden der Berufskunde gewidmeten Bücher unseres Verlages hinweisen, die auf diesem Gebiet alle Auskünfte geben, die überhaupt verlangt werden können, und die auch Tabellen der einschlägigen Lehranstalten, Angaben über Bedingungen und Kosten, enthalten. Die Bücher heißen:

a) Die funktechnischen Berufe. Ausbildungsgänge und Arbeitsmöglichkeiten in der Hochfrequenztechnik und Elektronik. Von Herbert G. Mende. 88 Seiten mit 10 Bildern und 8 Tabellen. Preis 4.20 DM.

b) Berufskunde des Radio- und Fernsehtschnikers. Vom Lehrling zum Meister. Von Dipl.-Ing. Georg Rose. 144 Seiten mit 2 Tafeln. Preis 3.20 DM.

Das erste Buch befaßt sich mit sämtlichen Berufen und Ausbildungsmöglichkeiten, wobei das Schwergewicht auf den ingenieurmäßigen Berufen liegt; das zweite ist dagegen den handmerklichen Berufen des Rundfunk- und Fernsehtechnikers gewidmet, für die es u. a. auch die Ausbildungspläne für alle drei Lehrjahre, die Vorbereitung zur Gesellenprüfung, den Weg zur Meisterprüfung enthält. Beide Bücher sind sehr lesenswert und sollten von allen Interessenten an einem funktechnischen Beruf gründlich studiert werden. Als Reihenfolge empfehlen wir, zunächst "Die funktechnischen Berufe" zu lesen, und anschließend, wenn man sich nach dieser allgemeinen Unterrichtung für die handwerkliche Seite entschieden hat, die "Berufskunde des Radio- und Fernsehtechnikers".

8. Die drei Neuerscheinungen der RPB:

Nr. 89/90a. Autoempfänger; Einbau, Antennen und Funkentstörung (192 Seiten mit 108 Bildern), Nr. 91/92. Superhet-Empfänger (128 Seiten mit 107 Bildern). Nr. 93/94. Fernsteuerschaltungen mit Transistoren für Flugmodelle (128 Seiten mit 75 Bildern), befinden sich im Druck und erscheinen Anfang 1959. Vor Weihnachten sind diese Bände also leider nicht mehr lieferbar.

Alle unsere Bücher sind bei zahlreichen Buchhandlungen und vielen Fachhandlungen (Buchverkaufsstellen) ständig vorrätig. Bestellungen können auch an den Verlag gerichtet werden.

FRANZIS-VERLAG . MÜNCHEN 37 . KARLSTR. 35

Postscheckkonto München 57 58

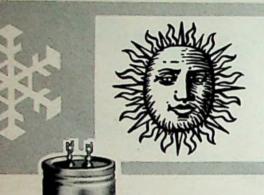
Synacord

Wir sind umgezogen!

Seit 1. November 1958 befinden wir uns in unseren neu erstellten Fabrikgebäuden in Straubing. Die Fertigungshalle ist nach den letzten Erkenntnissen für moderne industrielle Herstellungsverfahren erstellt worden.

Auch Ihnen kommen die Ergebnisse bestens zugute: Preiswürdigkeit und hohe Qualität der Erzeugnisse, ständig kontrollierte Produktion nach den neuesten Entwicklungsergebnissen und besten Stand der Technik!

Bitte notieren Sie, wie Sie uns jetzt erreichen können:


Lynacord

ELEKTRONIK UND GERÄTEBAU

(3) Straubing/Donau
Siemensstraße - Schließfach 68

Fernsprecher: 3538 und. 3539
Fernschreiber: 65520 (ab Dezember)
Drahtwort: Dynacord Straubing

BOSCH MP-Einheits-Kondensatoren Klasse 1

BOSCI Kondens für beson tische Ar Diese Ko

BOSCH MP-Einheits-Kondensatoren Klasse 1 für besonders hohe klimatische Anforderungen.

Diese Kondensatoren werden verwendet in feuchten Räumen aller Zonen, im Freiluftklima der gemäßig-

ten Zone, der trockenen und feuchten Tropen und im arktischen Freiluftklima.

Ausführung: MP-Wickel in rundem Aluminiumgehäuse mit eingelötetem Stahlblechdeckel, durch allseitige Lackierung korrosionsfest. Glasdurchführungen mit Lötösen zum Anschließen der Leitungen. Gewindebolzen am Gehäuseboden zum Befestigen des Kondensators und gleichzeitig als Erdanschluß.

Liefezbar in folgenden Größen:

Nennspannung (Spitzenspannung) Gleichstrom V	Zul. Wechsel- spannung 50 Hz V	Kapazitäten μF	
160 (240)	75 DB 115 AB	1 — 32	
250 (375)	125 DB 190 AB	0,5 — 40	
350 (525)	150 DB 225 AB	0,5 — 32	
500 (750)	220 DB · 330 AB	0,1 - 20	
750 (1125)	250 DB 375 AB	0,5 — 8	

DB = Dauerbetrieb

AB = Aussetzender Betrieb

BOSCHMP-Kondensatoren heilen Durchschläge selbsttätig ohne Betriebsunterbrechung. BOSCH MP-Kondensatoren sind kurzschlußsicher, unempfindlich gegen kurzzeitige Überspannungen und praktisch induktionsfrei. Abmessungen und Gewicht sind besonders gering.

ROBERT BOSCH GMBH STUTTGART Postfach 50

Briefe an die FUNKSCHAU-Redaktion

Nachstehend veröffentlichen wir Briefe unserer Leser, bei denen wir ein allgemeines Interesse annohmen. Die einzelnen Zuschriften enthalten die Meinung des betroffenden Lesers, die mit der der Redaktion nicht übereinzustimmen braucht.

Aktuelle Probleme des Fernschens

FUNKSCHAU 1958, Heft 15, Leitartikel

Sehr geehrter Herr Tetzner!

Ich las im ersten Augustheft der FUNKSCHAU Ihren Leitartikel "Aktuelle Probleme des Fernsehens". Dabei ist mir – das werden Sie wohl verstehen – der Satz aufgefallen, daß der UHf-Tuner relativ teuer ist.

Bitte verzeihen Sie mir einige Bemerkungen dazu, aber ich habe doch den Eindruck, daß die großen Anstrengungen der deutschen Röhren-Industrie durch diese Bemerkung in keiner Weise berücksichtigt werden. Wenn ich mir einen kurzen Überblick auf die technische Entwicklung gestatten darf, so sieht dieser doch folgendermaßen aus:

Noch 1939 endete der Frequenzbereich für Röhren der Großfertigung bei ca. 30 MHz. Nach dem Kriege gelang es, die Großserienröhre in das UKW-Gebiet einzuführen. Durch das Fernsehen wurde der Arbeitsbereich der handelsüblichen Röhre bis 250 MHz erweitert. Nun ist es der Röhren-Industrie gelungen, Röhren ganz normaler Bauart für das Gebiet bis ca. 800 MHz zu schaffen. Noch vor wenigen Jahren hätte man ein solches Unterfangen als völlig unmöglich beurteilt. Daß es gelungen ist, einen UHf-Tuner mit Röhren zu bestücken, die sich äußerlich in nichts von normalen Rundfunk- und Fernseh-Verstärkerröhren unterscheiden, beruht auf den in der Stille betriebenen Laborarbeiten über Rauschen, über Dimensionierung von additiven Mischschaltungen und natürlich auch auf den Erfahrungen mit der Spanngittertechnik.

Zugegeben, daß diese Dinge natürlich den breiten Leserkreis nicht interessieren. Wichtig aber ist, daß eine Röhre gängiger Fertigungstechnik Verwendung finden konnte. Das bedeutet nicht nur eine Verbilligung auf der Röhrenseite, sondern selbstverständlich auch eine Verbilligung auf der Geräteselte. Sie wissen ja selbst, welche Schwierigkeiten in den vergangenen Jahren konstruktiv zu überwinden waren, um Röhren mit scheibenförmigen Elektrodenausführungen, wie sie für diese Frequenzgebiete teilweise benutzt werden, einzubauen. Es kam auch hier nicht darauf an, eine spezielle, nur für Band IV und V geeignete Röhrentype zu schaffen, sondern es gelang der deutschen Röhrenindustrie eine Röhre zu bringen, die sowohl für Band IV und V, wie auch für I und III auf Grund ihrer hohen Steilheit verwendbar ist.

Wenn Sie diese Gedankengänge objektiv prüfen, werden Sie sicherlich mir recht geben, daß durch diese neue Röhrenentwicklung, mit der die deutsche Röhrenindustrie führend in der Welt ist, alle Voraussetzungen gegeben sind, um einen UHf-Tuner so billig wie irgend möglich herzustellen.

Es ist ja schließlich keine Kleinigkeit, wenn man die Technik vor wenigen Jahren damit vergleicht, Frequenzen in dem Gebiet nicht nur zu erzeugen, sondern auch hoch zu verstärken und dabei einen niedrigen Rauschpegel zu sichern.

Mit der Schaffung der PC 88 ist zusätzlich der große Vorteil verbunden, daß der UHI-Tuner eine hinreichende Leistungsverstärkung abgibt, um Duplex-Betrieb zu ermöglichen. Noch vor kurzer Frist glaubte man, daß UHI-Empfang nur dann möglich ist, wenn der Kanalschalter für Band 1 und III zur Verstärkurg bei UHI-Betrieb mit herangezogen wird. Die Röhre PC 86 ermöglicht eine Umschaltung des ZI-Eingangs von dem Tuner I und III auf den Tuner IV und V, so daß der Käufer des Gerätes durch Drucktaste, wie bei UKW und Mittelwelle, zwei Sender sofort eingestellt zur Verfügung hat.

Ich bin aus diesen Gründen der Meinung, daß der Käufer diesen Gewinn auf Grund des glücklichen Wurfs der PC 86 relativ billig erhält.

Ich wollte Ihnen diese Gedankengänge mitteilen, da ich weiß, daß Sie für die Sorgen und die Arbeit der Röhren- und Geräteentwickler Verständnis haben und aus diesem Grunde interessiert sind, die Ansicht derer kennen zu lernen, die jahrelang um die Lösung der Aufgabe bemüht waren, einen Empfang in Band IV/V auf billige und qualitativ hochwertige Weise zu ermöglichen.

Sehr geehrter Herr Schiffel,

Seien Sie versichert, daß mir die Tätigkeit der deutschen Röhrenindustrie, insbesondere aber ihrer Laboratorien, nicht nur bekannt ist, sondern daß ich diese mit der größten Hochachtung verfolge. Es gehört zu meinen Aufgaben, diese Arbeiten zu beobachten und unseren Lesern davon Kenntnis zu geben. Was meine Bemerkung vom relativ teuren UHI-Tuner angeht, so wollen Sie bitte berücksichtigen, daß noch auf der Märztagung in Bad Boll Staatssekretär Prof. Dr. Dr. Gladenbeck vom Bundespostministerium mit Preisen von 40 bis 50 DM für den UHI-Eingang eines Fernschempfängers operierte. Offensichtlich dachte er an die überholte Technik mit UHI-Streifen in den Kanalschaltern. Wenn nun in Zukunft im Handel wahrscheinlich für einen UHI-Tuner mit zwei Röhren PC 86 einschließlich Einbau (der in älteren Fernschempfängern, die nicht für UHI vorbereitet sind, beträchtliche Schwierigkeiten bereiten wird) Beträge von 180 bis 200 DM verlangt werden müssen, und wenn Sie diese Summe in Relation zum Bruttopreis eines 43-cm-Tischempfängers setzen, so werden Sie mir vielleicht meine Bemerkung im Leitartikel von Heft 15 "relativ teuer" abnehmen.

Ihr Karl Tetzner

Kommt von der halbierten Bandgeschwindigkeit allein das Heil?

FUNKSCHAU 1958, Heft 18, Briefe an die FUNKSCHAU-Redaktion

Um bei 9,5 cm/sec Bandgeschwindigkeit eine obere Grenzfrequenz von 16 kHz zu erzielen, muß mit einem extrem kleinen Kopfspalt gearbeitet werden. Hierdurch wird aber die Spannungsabgabe des Hörkopfes proportional herabgesetzt, so daß die Dynamik verschlechtert wird, will man nicht unwirtschäftlich teure Abschirmmaßnahmen in Kauf nehmen. Ich hatte Gelegenheit, einen Tonbandgerätekoffer mit einer oberen Frequenz von 16 kHz bei 9,5 cm/sec durch-

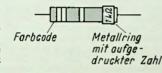
zumessen und stellte fest, daß der Klirrfaktor, um den Aussteuorungsbereich zu erhöhen, etwa 9 % bei Vollaussteuerung erreichte! Im Geräteprospekt stand "Gute Hi-Fi-Qualität", was aber bei einer solchen Verzerrung kaum zutrifft. Ich würde es begrüßen, wenn man außer Worbeabgaben auch einmal reale technische Daten nennen würde.

Warum keine farbigen Flutlicht-Skalen?

Durch meine Arbeiten auf dem Gebiete der Hochfrequenztechnik, die ich als Amateur durchführe, habe ich auch die Möglichkeit, mit vielen funktechnisch interessierten Rundfunkhörern ins Gespräch zu kommen. Einen Gesprächsstoff, der seit einiger Zeit immer wieder auftaucht, bildet das Thema der Skalenkonstruktion bei den Empfängern von der Mittelklasse aufwärts.

Fast alle deutschen Geräte dieser Preisklassen, die für den Inlandsgebrauch bestimmt sind, besitzen Schwarz-Weiß-Skalen, die von hinten oder über ein Blendblech oder über eine Mattschelbe beleuchtet werden. Meine Frage geht nun dahin, warum bei den deutschen Inlandsgeräten die farbige Skala fast verschwunden ist?

Vom psychologischen Standpunkt aus gesehen, dürfte eine farblich abgestimmte Skala dem Käufer mehr liegen als die üblichen Schwarz-Weiß-Skalen. Eine sehr hübsche Skalenart, die auch von den Herren, mit denen ich über dieses Thema gesprochen habe, sehr vermißt wurde, ist die Flutlicht-Skala. Meines Wissens tauchte sie etwa 1937 auf und verschwand wieder nach dem Kriege. Es lassen sich bei der Flutlicht-Skala sehr wirkungsvolle Farbeffekte erzielen, die auch am Tage bei teilweiser Sonnenbestrahlung in ihrer Wirkung kaum nachlassen. Vielleicht ist man eines Tages so welt, daß man an Stelle des bedruckten Glases entsprechend behandelte, glasklare, einige Millimeter starke Kunststoff-Platten oder aber Kunststoffolie verwendet, die durch eine schützende Glasplatte abgedeckt ist. Meines Erachtens werden sich gerade durchsichtige Kunststoffplatten, die entsprechend behandelt sind, für solche Skalen ganz hervorragend eignen. Die Beleuchtung würde wie bei Flutlicht-Skalen seitlich vorgenommen werden, jouen psychologische Wirkungsgrad ganz erheblich steigen.


H. M., Berlin-Neu-Westend Skalen seitlich vorgenommen werden, jedoch würde der technische und

Farbcode von Widerständen

FUNKSCHAU 1958, Heft 13, Heft 17 und Heft 18, Briefe an die FUNKSCHAU-

Ich babe letzthin das Juliheft Ihrer Zeitschrift FUNKSCHAU zu lesen bekommen. Ich kann Ihnen nur gratulieren zu dem reichen und technisch gut dargestellten Inhalt; insbesondere war u. a. die Abhandlung über die UHf-Tuner interessant und ausreichend. Unter den Briefen an die Redaktion hat besonders einer meine Aufmerksamkeit erregt, und zwar der von Herrn R. Z. aus Lübeck, betreffend Zahlen- und Farbenaufdruck bei Widerständen. Ich möchte dazu bemerken: Während bei der Produktion von Empfängern die Farbringe bei weitem eine bessere Schätzung der Werte gestatten, indem man mit einem Blick aus allen Richtungen den Wert herausfindet, wird die Bezeichnung fast nutzlos, wenn der Widerstand verbrennt. Nach Meinung von

R. Z. aus Lübeck kann man in den meisten Fällen jedoch noch schwache Zahlenreste erkennen, was freilich nicht immer stimmt, da die Zahl auf der ganzen Länge des Widerstandes aufgedruckt ist, und zwar wo die größte Hitze im Falle eines Verbrennens erzeugt

Ich möchte einen Vorschlag machen, der meiner Meinung nach die Lösung bringen könnte. Wie im Bild dargestellt, sollte wie üblich der Farbcode aufgedruckt werden, wodurch seine Vorteile beibehalten werden könnten, zugleich gestattet die am Widerstandsrand in den Metallring eingestanzte Zahl das Erkennen des Wortes auch dann, wonn der Widerstand durch Verbrennen vollständig zerstört worden ist.

S. C., Caracas/Venezuela

Ich arbeite als Funktechniker jetzt seit über fünf Jahren in der amerikanischen Radioindustrie und kann Ihnen mitteilen, daß die amerikanische Industrie dazu übergeht, neben den Farben den Zahlenaufdruck zu verwenden. Die Markenfabrikate tragen ihn schon seit längerer Zeit. Der Hauptgrund dafür ist, daß die Farben sich durch Alter und Hitze ändern. Man erkennt dann eine neue Farbe und meint, es ist die Originalfarbe. Ich habe schon Widerstände gesehen, deren gelber Ring sich einwandfrel in einen braunen verwandelt hatte. Erst wenn man den Widerstand auseinanderbrach, konnte man die Hitzecinwirkung bemerken. Steht beispielsweise der verfärbte Ring an dritter Stelle, so bedeutete das eine ganz wesentliche Verfälschung der Wertangabe.

Hier wird meist ohne Schaltbild repariert, so daß leicht falsche Widerstände eingebaut werden. Derartige Empfänger wandern dann häufig von Werkstatt zu Werkstatt, nachdem sie bei der ersten Reparatur fast unbrauchbar gemacht

Dagegen bereitet das "Übersetzen" der Farbringe in Wertangaben keine Schwierigkeiten. Man gewöhnt sich sehr schnell daran.

G. R., Chicago 41, USA

Ein Streifzug durch die Cortlandt Street in New York

Fährt man in New York mit der Subway downtown bis zur Cortlandt Street, so findet man in dieser Straße einen Rundfunkladen neben dem anderen. Neben allen Typon der neuen Radio- und Fernsehempfänger emerikanischer Firmen (Admiral, Emerson, General Electrics, Hotpoint, Motorola, Montgomery, Packard, Philco, R. C. A., Westinghouse und Zenith) sind auch deutsche Exportgeräte (vor allem Grundig-Majestic, weiter Blaupunkt, Telefunken und Wega) in den Schaufenstern ausgestellt. Auffällig ist die große Zahl der Transistorempiänger "made in Japan", die im Preis außerordentlich niedtig liegen Außertigen und der Verschutze Gerste aller Arten und niedrig liegen, Außerdem werden aber auch gebrauchte Geräte aller Arten und Baujahre, sogar noch Wehrmachtsgeräte, angeboten.

Reißfest wie Stahl

Dehnungsfest

Hitzefest

Abriebfest

PE 31 Langspielband

für alle Ge

Fordern Sie bitte Druckschriften an AGFA AKTIENGESELLSCHAFT · LEVERKUSEN · MAGNETON-VERKAUF

Ectronik l'AST Antenne

das neue Zauberwort für mühelose, schnelle, solide Fernsehantennen-Montage ohne Werkzeug am Fenster oder unter Dach:

Element-Raste

Sekundenschneil sind die Antennen-Elemente ausgeschwenkt und millimetergenau eingerastet.

Kabel-Raste

Nur ein Fingerdruck, und schon ist das Antennenkabel fest eingerastet.

Richtungs-Raste

Mit einem Handgriff rastet die Fernsehantenne in Jade gewünschte Richtung ein.

Eletronik l'ast Antennen

sind für Sie und Ihre Fernsehkunden ein voller Erfolg weil kinderleichte rast-Montage, gute elektrische Eigenschaften, Wetter- und Schlagfestigkeit des Materials auf ideale Weise vereinigt sind.

Eltronik I'll St Antenne

die Fernsehantenne mit Zukunft!

Verlangen Sie bitte kostenios die "Eltronik-Antennenpost" und die Eltronik-Antennenkataione.

DEUTSCHE ELEKTRONIK GMBH Berlin-Wilmersdorf

Aber nicht nur Empfänger, auch Meßgeräte und Tape Recorder (Tonbandgeräte) sind in jeder Ausführung zu haben. Wir ließen uns u. a. den kleinen
batterlebetriebenen Fi-Cord Fidelity Tape Recorder (mede in England) vorführen, der 7 Transistoren enthält und mit den Bandgeschwindigkeiten 19 cm/s
und 4.75 cm/s arbeitet (Preis in USA allerdings 330 \$1).

und 4.75 cm/s arbeitet (Preis in USA allerdings 330 81).

Vor allem sind die Läden in der Cortlandt Street aber eine wahre Fundgrube für den Bastler. Man kann dort für wenige Dollar einen alten Television-Set zum Ausschlachten der zahlreichen, noch verwendbaren Einzelteile kaufen. Von der kleinsten Schraube bis zur dünnsten, abgeschirmten Speziallitze für Tonabnehmerarme ist jedes Bauelement zu haben. Wir sahen dort u. a. Plexiglasgehäuse und Batteriehalter aller Größen für Transistorgeräte, kleine abgeschirmte Stecker und Buchsen für Nf und Hf, raumsparende Zwischentransformatoren für AM und FM sowie Lautsprecher aller Typen (Hochund Tieftönor, Druckkemmersysteme) in allen Größen.

Hi-Fi-Anlagen weisen als kleinste Sprechleistung 18 Watt auf. Oft werden sie als "Kit" verkauft. Dann erhält man Chassis, Gehäuse und alle Einzelteile einschl. Röhren nebst ausführlicher Baubeschreibung und großen Bauplänen, auf denen auch die Leitungsführung genau und eindeutig eingezeichnet ist. Stets wird angegeben, wieviel Dollar man spart, wenn man anstatt der betriebsfertigen Anlage den Kit kauft. Die größten, Kits herstellenden Firmen sind wohl die Heath Company in Michigan?], Allied Radio in Chicago und Lafayette Radio in Jamaica 31, N. Y. Selbstverständlich werden als Kits auch Radioempfänger und Meßinstrumente aller Art abgegeben. Neben Schallplatten der international genormten Größen und Tourenzahlen sind auch bereits Stereo-Schallplatten und die hierzu erforderlichen Stereo-Anlagen im Handel. Für 79,50 S erhält man schon einen Storeo-Vorverstärker-Kit, für 70 S den dazu passenden Stereo-Leistungsverstärker-Kit mit 2 X 15 Watt Sprechleistung, Stereo-Schallplatten (New Audio Fidelity Stereo Discs), 12" ©

(30 cm ϕ) für 331/3 Upm werden zum Preise von 6,95 8 verkauft.

Aufmachung und Einrichtung der Läden in der Cortlandt Street sind ganz verschieden und erstrecken sich von erbärmlich eingerichteten Ramschläden bis zu hochmodernen Selbstbedienungsgeschäften. Dem Newyorker wird jedenfalls hier eine Auswahl für sein Hobby geboten (sei es Radio, Television, Hi-Fi, Phono- oder Tonbandtechnik), die in keiner Straße einer deutschen Großstadt zu finden ist.

-ner.

1) Im Anzeigenteil der FUNKSCHAU wird das Gerät von der Wacker KG, Frankfurt-M., angeboten, ist also auch in Deutschland zu haben.

 Heath-Kits werden auch in Deutschland angeboten (s. Anzeigenteil der FUNKSCHAU).

Deutschland erreichte höchste Punktzahl im internationalen Amateur-Tonaufnahmen-Wettbewerb

23 prominente Fachleute in- und ausländischer Rundfunkstationen und der Elektroakustik sowie der nationalen Amateurverbönde versammelten sich vom 18. bis 22. Oktober in den Studioräumen bei Radio Bern, um über eingereichte Tonbandaufnahmen aus fünfzehn Nationen zu entscheiden. Es handelte sich hierbei um die Jeweils fünf besten Amateuraufnahmen, die von einer nationalen Jury in den betreffenden Ländern ausgewählt worden waren. Die eingereichten Tonbandaufnahmen der Amateure hatten einen ungewöhnlich hohen Entwicklungsstand sowohl in technischer als auch in gestaltungsmäßiger Hinsicht.

Die Einsendung eines Mitgliedes der deutschen Amateurorganisation, des Deutschen Tonjägerverbandes (DTV), e. V. Nürnberg, erhielt mit 378 Punkten die höchsterreichte Punktzahl. Damit fiel der von England gestiftete Wanderpokal für das Jahr 1958/59 nach Deutschland. Der Sieger erhielt den 1. Preis in der Kategorie C. Es handelte sich um eine Aufnahme des Tonjägers Wilhelm Glückert aus Mainz, die mit dem Titel "Unter dem Vierfarbenbanner" eingereicht wurde.

Auch bei den übrigen eingereichten Arbeiten sind die Vertreter Deutschlands jeweils unter den ersten acht zu finden. Damit haben die deutschen Tonband-amateure einen großen Achtungserfolg errungen. Dies dürfte sich auch darin ausdrücken, daß eine namhafte deutsche Schallplattenproduktionsgesellschaft die prämierten Amateuraufnahmen für eine Langspielplatte in ihre Produktion aufnehmen will. Auch in- und ausländische Rundfunkstationen bringen Ausschnitte und Sendungen dieser preisgekrönten Amateuraufnahmen.

Der gleichzeitig in Bern tagende Jahreskongreß der nationalen Tonjägerverbände hat einstimmig beschlossen, daß der 8. Internationale Wettbewerb der besten (Amateur)Tonaufnahme [IWT 1959] in London stattfindet. Der englische Tonjägerverband gemeinsam mit der englischen Radiostation BBC wurde mit der Durchführung beauftragt.

Musische Bildungsstätte Remscheid – Schallplatte und Tonband gehören zum Lehrplan

Die am 20. September eröffnete Musische Bildungsstätte Remscheid, nur 8 km vom Stadtkern entfernt in idyllischer Lage im Bergischen Land, ist die einzige Einrichtung ihrer Art in Europa. Sie wurde mit staatlicher Unterstützung von der Stadt Remscheid auf einem 22 000 qm großen Grundstüderrichtet. Drei Gebäudekomplexe mit 11 000 cbm umbautem Raum stellen die nötigen Unterrichte-, Übungs-, Aufführungs- und Unterkunftsräume für jeweils 58 Kurs- und Tagungsteilnehmer bereit.

Zweck des Institutes ist es, den haupt- und ehrenamtlich tätigen Leitern der freien und behördlichen Jugendarbeit die theoretische Grundlage und das praktische Rüstzeug für ihre Arbeit in der musischen Jugendbildung zu vermitteln. Die ersten Gäste waren Teilnehmer einer Tagung für Laienspieler. Dozent für Rundfunk- und Fernsehkunde. Tonband und Schallplattenpraxis

Dozent für Rundfunk- und Fernsehkunde, Tonband und Schaliplattenpraxis [offiziell Dozent für "Technische Mittler" genannt) ist Jörn Thiel, Mitarbeiter des Westdeutschen Rundfunks und bekannter Publizist auf dem Gebiet von Rundfunk, Fernsehen und Tonträgern als technische Mittler. Sein Lehrauftrag vereint ein wissenschaftliches und ein pädagogisch-technisches Fach, wofür ihm ein gut ausgebautes Studio nach eigenen Entwürfen und Konstruktionsvorschlägen zur Verfügung steht. Ein Vortrag der anlaufenden Lehrgänge befaßt sich mit Mikrofon und Tonband in der Hand des Amateurs; Übungen betreffen Tonbandaufnahme. Schnitt und Montage.

Weitere Dozenten sind für "Musik", "Spiel", "Tanz" und "Werken" (Zeichnen, Malen, Handarbeiten mit Bast, Ton, Holz, Stein, Glas u. a.) berufen

Modellaufnahme des neuen Telefunken-Rundfunkgerätewerkes (Bauabschnitt 1 und 2) an der Nanndorfer Chaussee in Hannover mit Arbeitsplätzen für 1200 Mitarbeiter

Neue Telefunken-Fabrik in Hannover

Das zur Zeit im Bau befindliche neue Werk von Telefunken an der Nenndorfer Chaussee unwelt der jetzigen Fabrikations- und Verwaltungsgebäude an der Göttinger Chaussee soll mit seinem ersten Bauabschnitt im kommenden Frühjahr und mit dem zweiten im Herbst 1959 in Betrieb genommen werden. In dem mehrstöckigen, voll klimatisierten Gebäude werden dann 13 000 qm (netto) Fabrikationssläche zur Verfügung stehen. Für spätere Erweiterungen ist ausreichend Gelände vorhanden.

Das neue Werk wird 1200 Menschen beschäftigen; dabei dürfte der Anteil weiblicher Arbeitskräfte 70 % betragen, und nach Vollendung des Endaus-baues kann alle 30 Sekunden ein Rundfunkgerät hergestellt werden. Wie Direktor Mantz anläßlich einer Pressebesprechung erläuterte, sollen die neuen Fabrikationsanlagen die gesamte Rundfunkgerätefertigung aufnehmen, so daß die Hallen an der Göttinger Chaussee für Fernsehempfänger und Musikschränke frei werden. Man erwartet von der Stereofonie eine weitere Auf-wärtsentwicklung vorerst auf dem Musikschrank- und teilweise auch auf dem Rundfunkgerätesektor, während sich die Fernschempfängerproduktion der bundesdeutschen Industrie in den kommenden Jahren auf 2 Millionen Geräte pro Jahr steigert. Die Technik der Fernschgeräte, so führte Direktor Mantz aus, wird stärker noch als bisher der Automatisierung der Abstimm- und Einstellvorgänge zustreben, auch ist in naher Zukunst mit einem Anteil der 53-cm-Bildröhre in Höhe von 80 % zu rechnen. Diese Überlegungen trugen zu dem Entschluß bei, der Fernsehgerätefertigung mehr Raum als bisher zu-zuweisen, damit der Telefunken-Marktanteil gehalten werden kann. Die Produktion von Rundfunkempfängern wird in Zukunft stückzahlmäßig kaum zurückgehen, jedoch zeichnen sich Umschichtungen in der Zusammensetzung des Typenprogramms ab; Reisesuper und kleinere Tischempfänger verbessern ihren prozentualen Anteil an der Produktion. Heute ist der Anteil Rundfunk-empfänger bis 300 DM Listenpreis bereits auf 60 % gestiegen – vor drei Johren lag er bei 40 %.

Auf der gleichen Veranstaltung führte Dr. Slawik (Teldec) Stereo-Schallplatten auf der Stereo-Luxus-Truhe S 8 vor; insbesondere die neuen Aufnahmen klassischer Musik bewiesen die große Dynamik und Durchsichtigkeit, die allein die Stereofonie bieten kann. Eine Vorstellung der kleineren Stereo-

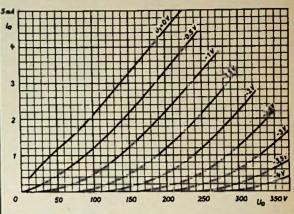
Geräte und -Verstärker bildete den Abschluß.

Funkfeuer stört auf der Zwischenfrequenz

Im Raum Lohr/Offenburg/Kehl klagt der Fachhandel (und das Publikum) seit Monaten über Störungen des Rundfunkempfanges durch zwei Flugplatzsender, die direkt auf bzw. in der Nähe der Zwischenfrequenz handelsüblicher Rundfunkgeräte arbeiten. Obwohl die Frequenz 460 kHz von der Deutschen Bundespost bisher recht gut freigehalten werden konnte, versagt ihre Autorität bei den beiden Funkfeuern mit den Kennungen LR und LH (Standort ist der französische Milltärflughafen Lahr/Baden). Der Sender LR benutzt zur Zeit die Frequenz 449 kHz und stört daher kaum, aber LH arbeitet genau auf 460 kHz und wurde zudem vor einiger Zeit von 5 kW auf 50 kW Senderleistung verstärkt. Entsprechend ihren Aufgaben strahlen beide Anlagen vierundzwanzig Stunden am Tage.

zwanzig Stunden am Tage.
Seit Monaten muß die Industrie sämtliche in diesem Teil des badischen Raumes gelieferte Rundfunkempfänger umtrimmen bzw. die Arbeit muß vom Fachhandel erledigt werden, indem die Oszillatoren und Zf-Übertrager auf

meistens - 472 kHz als neue Zwischenfrequenz umzustellen sind.


Auf Bitten der Rundfunkwirtschaft erhob der Funkreserent der Oberpostdirektion Freiburg i. Br. Vorstellungen beim FTZ in Darmstadt mit dem Ziel,
Verhandlungen zwischen dem Bundespostministerium und den zuständigen
französischen Dienststellen in Gang zu bringen. Man hofft auf deren Verständnis, so daß wenigstens das Funkseuer mit Kennung LH seine Frequenz
ändert. In einem ähnlichen Falle, als im März dieses Jahres im Landkreis
Emmendingen ein störendes Funkseuer austrat, zeigten sich die Dienststellen
entgegenkommend und änderten die Frequenz des Senders.

Gemäß Weltnachrichtenvertrag von Atlantic City (1947) — Vollzugsordnung für den Funkdienst — ist der Bereich 415...490 kHz dem Telegrafie-Seefunkdienst vorbehalten, nur zwei namentlich genannte Rundfunksender (Östersund/Schweden auf 420 kHz und Oulu/Finnland auf 433 kHz) dürfen ausnahmsweise hier arbeiten, Flugfunkfeuer hätten also nichts auf 460 kHz zu suchen — jedoch gelten die zwischenstaatlichen Frequenzverteilungspläne nicht für militärische Funkanlagen. Kapitel V. Artikel 47 des Internationalen Fernmeldevertrages bestimmt nämlich:

- Die Außerordentlichen und Ordentlichen Mitglieder behalten ihre volle Freiheit in bezug auf militärische Funkanlagen ihrer Land-, Seeund Luftstreitkräfte.
- 2. Soweit es möglich ist, sind indessen bei diesen Anlagen diejenigen Vertragsvorschriften zu beachten, welche die Hilfeleistung in Notfällen und die Maßnahmen zur Verhütung schädlicher Störungen betreffen ebenso wie die Vorschriften der Vollzugsordnung über die je nach Art des wahrgenommenen Dienstes zu benutzenden Sendearten und Frequenzen.

Dieser letztgenannte Absatz 2 läßt immerhin einige Hoffnungen zu auf Beseitigung der Empfangsstörungen im badischen Raum.

Anodenstrom als Funktion der Anodenspannung

LORENZDoppeltriode ECC 803 (=6057)

eine stoß- und schüttelfeste Spezialröhre mit getrennten Katoden; infolge des hohen Verstärkungsfaktors besonders geeignet für die industrielle Elektronik und als NF-Phasenumkehrröhre. Enge Toleranzen erlauben Röhrenwechsel ohne Korrektur der Einstellwerte.

Betriebsdaten

Kapazi	täten System I	System II			
Cε	1,6 ± 0,4	1,6 ± 0,4 pF			
Cα	$0,46 \pm 0,24$	0,34 ± 0,26 pF			
Cta	1,7 ± 0,43	1,7 ± 0,43 pF			

STANDARD ELEKTRIK LORENZ AG

Lorenz-Werke Stuttgart

können Sie mit Mikroport hochwertige elektroakustische Übertragungen in Studio-Qualität durchführen. Diese neuartige Anlage befreit den Vortragenden von der lästigen Mikrofonschnur und macht ihn beweglich. Ungehindert kann er sich auf der Bühne, unter den Zuhörern im Saal oder bei Veranstaltungen im Freien bewegen. — Auch für Industrie, Gewerbe, Verkehr usw. ist Mikroport einsetzbar.

Mikroport

besteht aus einem dynamischen Richtmikrofon, einem batteriebetriebenen Taschensender, der ausschliesslich mit Transistoren bestückt ist, und einem netz-gebundenen Spezial-Empfänger. Die Reichweite des Senders beträgt im Freien etwa 100 m. Die Anlage ist von der Bundespost geprüft und zugelassen.

Richtmikrofon MD 405

Hachwertiges Tauchspulen-System mit Windschutz · Frequenzgang 100 bis 12 000 Hz ± 3 dB · Nierencharakteristik · Auslöschung 15 dB.

Miniatursender SK 1002

Trägerfrequenz umschaltbar 36,7 und 37,1 MHz · Verzerrungsfreie Frequenzmodulation mit Preemphasis - Empfindlichkeitsregler · Hubbegrenzung · Betriebszeit der Batterie 10 Stunden · Abmessungen nur 24 × 75 × 115 mm · Gewicht nur 175 g.

Empfänger Ela T 200

Hochempfindlicher Empfänger mit Abstimmanzeige und Pegelkontrolle · Eingebauter regelbarer Kontroll-Lautsprecher · Abschaltbarer niederohmiger Ausgang zum Anschluss elektroakustischer Anlagen mit Normpegel 1,55 V - Netzanschluss 110, 125, 220 V/50 Hz/35 W.

Fordern Sie bitte den Prospekt Mikroport bei uns an.

SENNHEISER

BISSENDORF/HANNOVER

Aus dem FUNKSCHAU-Lexikon

Der Auflagedruck von Tonabnehmern wird neuerdings in den technischen Beschreibungen und Prospekten von verschiedenen Firmen mit "p" bezeichnet, etwa "6 p". Das ist kein Druckfehler, und es soll also nicht 6 g (= Gramm) heißen. Vielmehr ist "p" die Abkürzung für Pond. Damit wird das Gewicht der Masseneinheit 1g am Ort der Normalfallbeschleunigung (980,665 cm/sec7)

Eine populäre Definition lautet: Das Pond steht für den Druck, das Gramm für das Gewicht, und im täglichen Gebrauch ist das Gleichsetzen von 1 p und 1 g zulässig. Korrekt ist das keinesfalls, weil das Gramm die Maßeinheit der Masse ist, nur ist eben in Technik und Wirtschaft das Gramm zur Bezeichnung des Gewichtes eines Massengramms üblich geworden. Um Zweideutigkeit zu vermeiden, wurde schon 1944 die Anwendung des Pond empfohlen; offenbar wird dem jetzt - siehe oben -teilweise entsprochen. Immerbin entsteht kein großer Fehler, wenn weiterhin 1 p = 1 g gesetzt wird

Das Wort "Pond" läßt sich auf das lateinische "ponderabel" = wägbar bzw. "Ponderabilien" = Wägbares, Körperliches im Gegensatz zu "Imponderabilien" zurückführen.

Zitate

97 % der dänischen Bevölkerung wohnen letzt im Versorgungsbereich unserer Fernsehsender, und wir erwarten einen Umsatz von 80 000 bis 100 000 Fernsehempfängern in den nächsten zwölf Monaten [..1958-59 Saesonen" in Rateksa, Kopenhagen, August 1958).

Wir versuchen den Bau eines Gerätes, das hineingesprochene Wörter einer Sprache in korrekte Wörter einer anderen Sprache übersetzt. Auf dem Papier ist eine solche Anlage fertig, aber wir haben nicht das Geld dafür. Immerhin würde das erste Muster dieser elektronischen Direkt-Übersetzungsmaschine 100 000 £ (= 1,2 Millionen DM) kosten (Dr. A. D. Booth vom Institut für numerische Automation der Universität London).

Ich bin in der Lage, meine Herren, Ihnen mitzuteilen, daß wir in nicht zu weiter Zukunft Aussicht auf ein Bandaufnahmegerät haben, das bei Ihnen zu Hause Fernsehprogramme speichert, so daß Sie Bild und Ton zurückspielen können. Wir erwarten, daß wir innerhalb eines Jahres ungefähr eine solche Anlage verkaufen konnen, die dann mit einem besonderen Zwischenstück an Ihren Fernsehempfänger anzuschließen ist (A. E. Johnson, Chairman der englischen Grundig [Great Briatin] Ltd., am 27. August vor der Tagespresse in London).

Die Federal Communications Commission hat die Besitzer von UKW-Rundfunksendern aufgefordert sich zu äußern, wie etwa ihre Stationen zur Verbesserung der Rentabilität mehrfach ausge-nutzt werden können. Vorschläge in dieser Rich-tung betreffen die zusätzliche Übertragung von Faksimile-Vorlagen, Markt- und Börsenberichte für zahlende Abonnenten, Fernbedienung von Verkehrsampeln usw, durch Mehrfachmodulation ("Seek new FM-Radio uses" electronics, August 1958).

Atom-Transistoren sind technisch möglich und im Labor bereits vorgeführt worden. Ein solcher Typ wird, wenn er kommerziell lieferbar ist. Rundfunk- und Fernsehempfänger unabhängig von Batterien und äußerer Stromzusuhr machen. so daß diese auf Jahre hinaus ohne Wartung arbeiten können. Sie werden wirkliche Portables sein und überall arbeiten (Hugo Gernsback in Radio-Electronics, Mai 1958).

Der Besucher der Messe in Hannover war über-

rascht von der betonten Herzlichkeit dem Ausländer gegenüber: weiche Sessel, Lächeln, Kaffee, Alkohol, Fotos, technische Informationen! Erklärung: Deutschland macht betonte Exportanstren-gungen ("Foire de Hanovro" in Toute la Radio,

Juli-August 1958).

Im Gegensatz zur Fachschule, die ihre Schüler lediglich im gewählten Spezialberuf weiterbildet, bereitet die Ingenieurschule – wie die Technische Hochschule – auf breiter wissenschaftlicher Grundlage für einen vielseitigen Beruf vor. Dabel baut die Ingenieurschule auf gesicherten wissenschaftlich-technischen Erkenntnissen auf und betont die unmittelbare Anwendung, während die Hochschule mehr die Problemstellung und die Forschung pflegt. (Aus der Denkschrift zur Frage des Ausbaues der Ingenieurschulen, herausgegeben vom

MIT FERNSEH-TECHNIK UND SCHALLPLATTE UND TONBAND FACHZEITSCHRIFT FUR FUNKTECHNIKER

Tendenzen im Großsenderbau

Auf die beiden ersten Phasen der Hochfrequenz-Nachrichtentechnik, der Pionierzeit und der anschließenden Periode der gründlichen wissenschaftlichen Durcharbeitung aller Einzelprobleme, die für das Großsendergebiet etwa zum Beginn des letzten Krieges abgeschlossen waren, folgte die dritte und letzte Phase, für die die Stichworte Konkurrenz, Serienfertigung und Konfektionierung der Geräte gelten, wobei die Ent-wicklung unaufhaltsam weitergeht. Vor zehn Jahren wurde der UKW-Rundfunk eingeführt; in Kürze steht die Erschließung des Dezimeterbereichs für das Fernsehen (UHf) bevor. Der Wellenmangel ist auch hier wieder der treibende Keil. Selbst das konservativste Gebiet, das des Mittelwellenrundfunks, wird sich noch einige Anderung gefallen lassen müssen. Auf den bevorstehenden Wellenkonferenzen sind Vorschläge dahingehend zu erwarten, die größte Zahl der Sender in etwa dem halben Wellenbereich zusammenzudrängen, dafür aber eine Anzahl ausschließlich von einer Station allein benutzter Frequenzen (Exklusivwellen) zu schaffen, die einwandfreien Fernempfang ermöglichen sollen. Diese Sender sollen Trägerleistungen von 300 bis 1000 kW haben und müssen erst geschaffen werden. Maßnahmen zur Bandbreiteeinsparung, z. B. ein modifiziertes Einseitenbandverfahren mit Träger und anodenmodulierten Endstufen, durch welche die eingeführten Empfänger natürlich nicht unbrauchbar werden dürsen, können weitere Erleichterung bringen. Weiter wird unbemannter und automatisierter Betrieb sowie automatische Reserveumschaltung - wie bei den UKW-Rundfunksendern bereits durchgeführt - im Vordergrund des Interesses stehen.

Auf dem Gebiet des Fernsehens erfordert die Erschließung des Bandes IV/V zwischen 470 und 790 MHz ($\lambda=38$ bis 64 cm) neue Entwicklungen und Investitionen. Hier werden Stationen mit bis zu 500 und 1000 kW effektiver Strahlungsleistung benötigt, die Sender mit Ausgangsleistungen von 10 bis 50 kW erfordern. Diese Sender unterscheiden sich von denen der niederen Bänder durch die in ihren Endstufen verwendeten Hochleistungsklystrons. Dieser Röhrentyp ist für diesen Wellenbereich bei hohen Leistungen prädestiniert, obwohl es einige Trioden- und Tetrodentypen gibt, die wenigstens für das langwellige Ende des Bandes IV geeignet sind. Ihre volle Überlegenheit zeigen die Klystrons aber erst bei noch kürzeren Wellen (1 bis 3 GHz), die ähnliche Hochleistungs-Dauerstrichtypen für Überhorizont-Richtfunkverbindungen (forward scattering) benötigten. Der hierbei ausgenutzte Ausbreitungseffekt ermöglicht zuverlässige Verbindungen weit über den Sichtbereich hinaus, der bei Wellen im Dezimeterbereich bisher als Ausbreitungsgrenze galt.

Während in diesem Frequenzgebiet die diffuse Streuung der gestrahlten Energie an Inhomogenitäten der Troposphäre ausgenutzt wird, läßt sich bei längeren Wellen (). = 5 bis 10 m) ein ähnlicher Effekt in der Ionosphäre ausnutzen (ionosphärisches scattering). Auch hier sind mit stark bündelnden Antennen auf beiden Seiten zuverlässige Punkt-zu-Punkt-Verbindungen möglich, obwohl dieses Frequenzgebiet bereits Jenseits der oberen Grenze des für normale ionosphärische Kurzwellenausbreitung benutzten Bereichs (unter 30 MHz) liegt; man erreicht sogar besonders große Reichweiten (um 1000 km). Leider ist die Bandbreite, die sich störungsfrei übertragen läßt. mit einigen zehn Kilohertz nicht sehr groß. Die erforderlichen Sender leisten etwa 20 kW. Bei ihrer Entwicklung sind Gesichtspunkte normaler kommerzieller Nachrichtensender und der Band-I-Fernsehsender in verschiedenem Maße gegeneinander abzuwägen. Der troposphärische Streuessekt gestattet dagegen große Bandbreiten und damit Vielkanalbetrieb. Er kommt damit einer weiteren allgemeinen Tendenz bei kommerziellen Sendern entgegen, die zur Erhöhung der Wirtschaftlichkeit in Richtung auf Mehrfachausnutzung geht. Moderne Nachrichtensender werden deshalb durchweg als Einseitenbandsender gebaut, bei welchen der Hochleistungsteil als linearer Hf-Verstärker arbeitet, während die Vorstufen Frequenzausbereitung, Modulation und Tastung besorgen. Die allgemeine Wellenknappheit berücksichtigend, beträgt die Bandbreite derartiger Sender nur +6 kHz, doch lassen sich hierin gleichzeitig vier Telefoniekanäle oder drei Telefoniekanäle und etwa 15 Fernschreibkanäle oder beliebige andere Kombinationen unterbringen.

Moderne Anlagen sind mit kontinuierlich durchstimmbaren Steuergeneratoren mit dekadischer Frequenzeinstellung und maximalen Frequenztoleranzen von einigen Hertz ausgerüstet, ermöglichen also Sofortverkehr (ohne Nachstimmung) bei Einseitenband-Telefonie- oder Schmalhub-Frequenzumtastbetrieb und sind zudem bei geringem Aufwand voll fernbedienbar. Die Hochleistungsverstärker (0,1 W bis 20 oder 100 kW) lassen sich fernbedient einschalten und überwachen und stimmen sich der Tendenz zur Fernbedienung folgend vollautomatisch in kürzester Zeit auf die Frequenz der von den Vorstufen angebotenen Steuerspannung ab. Bei den Sendern selbst ist das Siedekühlverfahren für die Hochleistungsröhren erwähnenswert, welches sich bereits weitgehend durchgesetzt hat. Hier kämpfen zur Zeit zwei Varianten um den Erfolg: Rippenanoden mit Außenkühlung und die sogenannte Kanalanode. Bei letzterer findet der Siedevorgang in zahlreichen achsenparallelen, oben und unten offenen Kanälen statt. Die Kanalanode erweist sich hinsichtlich Ruhe des Betriebs und Kühlleistungsfähigkeit als überlegen. Selbst Hochleistungsklystrons werden demnächst mit Siedekühlung ausgeführt. Dr. A. Ruhrmann

Aus dem Inhalt: Seite
Tendenzen im Großsenderbau 507
Das Neueste aus Radio- und Fernseh- technik: Band-I-Senderantenne mit Aus- blendung / Kombinierter Film- und Dia- Geber für Fernsehstudios
Kleinstoszillograf mit Subminiaturröhren 509
Transistor-Taschensuper noch kleiner 511
Einführung in die Impulstechnik, Teil 5 512
Pflichtempfangs-Schaltungen 513
Automatische Scharfabstimmung beim Wega-Fernsehautomat "Wegavision" 515
Einfacher FM-Prüfsender mit ECC 81 516
Ingenieur-Seiten: Die Anpassung in Empfangsantennen- anlagen
Telefunken-Siliziumdioden 519
Funktechnische Fachliteratur 520
Aus der Welt des Funkamateurs: Ein tragbarer Kurzwellenempfänger mit großer Empfindlichkeit
Steuersender mit Induktivitäts- abstimmung
Hochwertiger 6-W-Verstärker mit kleinen Abmessungen
FUNKSCHAU-Schaltungssammlung: Telefunken-Reisemischpult Ela 504 525
Mischperstärker in Kleinstausführung 526
Bemessung von Tonfrequenzfiltern 527
Rechteckgenerator für 10 Hz bis 180 kHz 528
Meßspannungsquelle für Oszillografen 528
Elektronischer Zeitschalter 528
Vorschläge für die Werkstattpraxis 529
Fernseh-Sernice

Herausgegeben vom

FRANZIS-VERLAG MÜNCHEN

Verlag der G. Franz'schen Buchdruckerei G. Emil Mayer

Verlagsleitung: Erich Schwandt

Redaktion: Otto Limann, Karl Tetzner

Anzeigenleiter u. stellvertretender Verlagsleiter: Paul Walde

Erscheint zweimel monatlich, und zwar am 5. und 20. eines jod. Monats. Zu beziehen durch den Buch- u. Zeitschriftenhandel, unmittelbar vom Verlag u. durch die Post. Monats-Bezugspreis 2.40 DM [einschl. Postzeitungsgebühr] zuzügl. 6 Pfg. Zustellgebühr. Preis des Einzelheftes 1.20 DM.

Redaktion, Vertrieb und Anzeigenverwaltung: Franzis-Verlag, München 37, Karlstr. 35. – Fernruf 55 16 25/26/27. Postscheckkonto München 57 58.

Hamburger Redaktion: Hamburg - Bramfeld, Erbsenkamp 22a — Fernruf 63 79 64

Berliner Geschäftsstelle: Bln.-Friedenau, Grazer Damm 155. Fernruf 71 67 68 — Postscheckk.: Berlin-West Nr. 622 66. Vertretung im Saargebiet: Ludwig Schubert, Neunkirchen (Saar), Stummstraße 15.

Verantwortlich für den Texttell: Ing. Otto Limann; für den Anzeigenteil: Paul Walde, München. – Anzeigenpreise nach Preisliste Nr. 9.

Versniwortlich für die Usterreich-Ausgabe: Ing. Ludwig Rathelser, Wien.

Auslandsvertretungen: Belgien: De Internationale Pers, Berchem-Antwerpen, Cogels-Osylei 40. — Niederlande: De Muiderkring, Bussum. Nijverheidswerf 19-21. — Usterreich: Verlag Ing, Walter Erb, Wien VI, Mariahilfer Straße 71. — Schwelz: Verlag H. Thali & Cie., Hitzkirch (Luzern).

Alleiniges Nachdruckrecht, auch auszugsweise, für Holland wurde dem Radio Bulletin, Bussum, für Österreich Herrn Ingenieur Ludwig Ratheiser, Wien, übertragen.

Druck: G. Franz'sche Buchdruckerei G. Emil Mayer, (13b) München 2, Karlatr. 35. Fernsprecher: 55 18 25. Die FUNKSCHAU ist der IVW angeschlossen.

DAS NEUESTE aus Radio- und Fernschtechnik

Band-I-Senderantenne mit Ausblendung

Der Mast des neuen Senderzentrums Flensburg des Norddeutschen Rundfunks, über den die FUNKSCHAU mehrfach im Nachrichtenteil berichtete, ist in vieler Hinsicht eine bemerkenswerte Konstruktion. Die Spitze des selbstschwingenden Stahlrohrmastes von 205 m Höhe für den Mittelwellensender (1570 kHz = 191.1 m, er ist also länger als eine Wellenlänge), trägt eine von Rohde & Schwarz entwickelte Fernseh-Antenne für Kanal 4 (Band I) und eine UKW-Rundfunk-Antenne; ferner sind Vorbereitungen für das Aufsetzen einer Band-IV/V-Antenne getroffen worden, die den Mast um 15 m erhöhen werden.

Hier soll weniger die interessante Speisung des durch einen Mittelisolator unterbrochenen Stahlrohr-Mittelwellenmastes und der UKW-Breitbandantenne (Gewinn 6) erläutert, als vielmehr die eigentliche Fernsehantenne kurz beschrieben werden (Bild 1).

Bei ihrem Entwurf war zu berücksichtigen, daß die Abstrahlung im Sektor 20°...70°, das ist die Richtung nach Kopenhagen, auf 0.5 kW eff. zu begrenzen war, während der Leistungsgewinn in den übrigen Richtungen auf 8 bemessen wurde, so daß sich nach Abzug der Kabelverluste eine dem Stockholmer UKW-Plan (1952) entsprechende effektive

Bild 1. Spitze des 205 m hohen Sendermastes Flensburg mit Band-i-Fernsehantenne (oben) und Band-II-Rundfunkantenne (darunter)

Strahlungsleistung von 50 kW für das Bild und 10 kW für den Ton ergibt. Wie aus Bild 2 sowohl als auch aus dem Foto Bild 1 erkennbar ist, erreichte man die Ausblendung durch Wegfall des vierten Antennenfeldes und durch Anbringen einer Anzahl von Reflektorschirmen, die um A und B (Bild 2) schwenkbar sind, so daß eine sorgfältige Korrektur der Abstrahlungscharakteristik möglich ist.

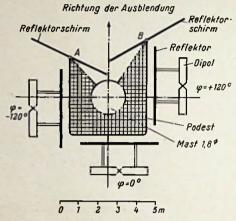


Bild 2. Anordnung der Fernseh-Antennenfelder und der Reflektorblenden (nach: Rundfunktechnische Mitteilungen, Bd. I, Nr. 4)

Zur besseren Versorgung der Stadt Flensburg selbst wurden die beiden Antennenfelder links unten im oberen Teil des Bildes 1 um einige Grade nach unten gekippt. Auf diese Weise vermeidet man das "Überschießen" des Stadtgebietes. Den Dipolströmen der einzelnen Felder der Band-I-Antenne werden durch Umwegleitungen die in Bild 2 erkennbaren Phasenverschiebungen gegeben, womit sich die Anpassung an das Speisekabel verbessert.

Man erzielt mit dieser von Rohde & Schwarz entwickelten Drehfeldspeisung eine gute Bildqualität selbst bei stärkster Vereisung der Antennenfelder, wie sie im rauhen Norden nicht selten sein dürfte. Die gleiche Drehfeldspeisung ist auch für die UKW-Rundfunkantenne (Band II) im unteren Teil von Bild 1 angewendet worden.

Hier sei erwähnt, daß Rohde & Schwarz auch die neue Antenne für den Fernsehsender Aalen geliefert hat, bestehend aus 16 vertikalpolarisierten Richtstrahlfeldern, die in Richtung des französischen Fernsehsenders Dijon eine Ausblendung um 6 dB sicherstellen. Die Drehfeldspeisung erlaubt einen beliebigen Betrieb in jedem Kanal von Band III ohne Antennen-Nachstimmung. K.T.

Die Zeitschrift

Elektronik des Franzis-Verlages

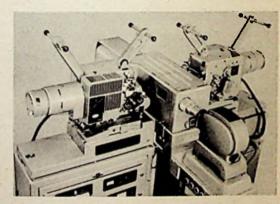
brachte in Nr. 11 (November-Heft) folgende Beiträge:

Reinert: Der Einfluß von Schreibkopf- und Bandeigenschaften bei der Aufzeichnung von Magnetband-Oszillogrammen

Rausch: Automatische Abstimmung für medizinische und industrielle Hochfrequenzgeneratoren Schierholt: Die Berechnung einfacher Magnetverstärker

Steinbrenner und Müller: Neue Verfahren zur Schwingungsanalyse bei Maschinenanlagen [1]

So schaltet die Industrie – Diktiergerät Stenomatic Charakteristisches von elektromechanischen Gebern Transistor-Kinpschaltungen


Gruhlo: Impulstechnik in der Atomphysik, Teil VII Berichte aus der Elektronik

Preis des Heftes 3.30 DM portofrei, Kjährlicher Abonnementspr. 9 DM, Probenummer auf Wunsch! Zu beziehen durch den Buch- und Zeitschriftenhandel, durch die Post und den Verlag

FRANZIS-VERLAG - MÜNCHEN 37 - KARLSTR. 35

Der universelle Charakter der Anlage wird durch die Möglichkeit unterstrichen, Filme wiederzugeben, die sowohl den Ton auf dem Filmrand tragen als auch auf einem getrennten Filmstreifen. Die Umschaltung von einem Projektor auf den anderen erfolgt vom Schaltgerät aus mit einer Taste; ein in den Strahlengang des startfertigen Projektors eingeblendeter kleiner Spiegel erlaubt das Betrachten des im Stillstand projizierten ersten Bildes, so daß sich der Film genau mit dem richtigen Bild starten läßt.

Der Diapositiv-Projektor wird von Hand mit dem üblichen zweiteiligen Wechselrahmen oder durch Fernschaltung eines achtteiligen Trommelmagazins bedient; auch kann ein grö-Beres Magazin für die Aufnahme von 36 Dias mit Fernschaltung angebaut werden. Schließlich ist es möglich, den Dia-Geber abzunehmen und an seiner Stelle einen Schwenkspiegel für die Übertragung von Fotos, Skizzen,

Siemens-Klangfilm-Multiplexer mit Vidicon-Kamera für die pausenlose Filmübertragung in Fernsehstudios sowie für die Wiedergabe von Diapositiven, Zelchnungsvorlagen und Rolltiteln

Kombinierter Film- und Dia-Geber für Fernsehstudios

Siemens & Halske zeigten auf der Photokina 1958 unter dem Namen Multiplexer 16/16 eine neue Film- und Dia-Übertragungsanlage für die pausenlose Wiedergabe von 16-mm-Filmen und Dias 5 × 5 cm in Fernsehstudios, Zusammengefügt sind in diesem Block zwei 16/16-Zweibandprojektoren mit Verstärkern für Lichtton, Magnetton-Randspur und Magnetton-Mittelspur, ein Dia-Projektor, ein Licht- und Tonweg-Schaltgerät mit Umlenkspiegel sowie eine Vidicon-Fernsehkamera mit Verstärker und Monitor. Textvorlagen usw. anzubringen, desgleichen eine Vorrichtung für die Übertragung von Rolltiteln.

In der Regel braucht dank der elektrischen Eigenschaften der Vidicon-Bildaufnahmeröhre kein strenger Gleichlauf zwischen Filmbildwechsel und elektrischem Bildwechsel zu herrschen. Wird dieser doch gefordert, so läßt sich ein quarz- bzw. taktgebersynchroner Antrieb nach der Pilotton-Methode erreichen. Ein Vorverstärker entnimmt dann aus dem Vortikalimpuls eine Sinusspannung von 1,5 V; sie wird zur Kontrolle für den Lauf des Synchronmotors in den Endverstärker für die Antriebssteuerung eingespeist.

Kleinstoszillograf mit Subminiaturröhren

Von Adolf Hoops, Applikationslabor der Valvo GmbH

In dieser Aufsatzreihe wird ein im Applikationslabor der Valvo GmbH entwickeltes Modell eines Kleinstoszillografen mit neuer Formgebung so ausführlich beschrieben, daß der Nachbau möglich ist. Wir weisen jedoch ausdrücklich darauf hin, daß Bausätze für die mechanischen und die speziellen elektrischen Einzelteile (Ringkerntransformatoren) weder im Handel noch von der Firma Valvo erhältlich sind. Der Nachbau in der gleichen Form ist also nur zu empfehlen, wenn über genügende handwerkliche Fähigkeiten und über eine maschinelle Werkstattausrüstung verfügt wird. Dabei braucht wohl nicht darauf hingewiesen zu werden, daß der Nachbau nur für den eigenen Gebrauch, nicht aber die gewerbliche Herstellung zum Weiterverkauf gestattet ist. Selbstverständlich kann die elektrische Schaltung auch zum Bau eines Oszillografen in der herkömmlichen Konstruktion, also in einem rechteckigen Gehäuse, verwendet werden.

Für bestimmte Aufgaben kann es von Interesse sein, einen Oszillografen mit extrem kleinen Abmessungen zu verwenden. Handelsübliche Kleinst - Oszillografen haben im allgemeinen ein quaderförmiges Gehäuse, in dessen Oberteil sich die Bildröhre befindet. Durch die Größe der Bauelemente und durch Einhalten gewisser Abstände derselben ergibt sich eine minimale Baugröße von etwa 100×200×300 mm. In manchen Fällen werden jedoch kleinere Abmessungen verlangt, z. B. wenn nur die Elektronenstrahlröhre untergebracht werden kann.

Eine Lösung mit kleinsten Abmessungen bietet diese Röhre selbst durch ihre Bauform an. Der nachfolgend beschriebene Oszillograf ist deshalb mit einem runden Gehäuse ausgeführt worden (Bild 1), dessen Durchmesser nur wenig größer als der Bildschirmdurchmesser ist. Die Bauelemente sind um den zylindrischen Teil der Oszillografenröhre herum angeordnet (Bild 2). Bei dieser gedrängten Aufbauform sind die Streumöglichkeiten, namentlich durch Netztransformator und Siebdrossel, sehr groß. Ebenso gestaltet sich der Aufbau der Verstärker schwierig, da diese kreisförmig um die Oszillografenröhre herum angeordnet werden müssen und ebenfalls untereinander koppeln können. An Bild 3 seien die Schwierigkeiten erläutert.

Einzelne Baugruppen müssen je nach Streuung und Funktion hintereinander angeordnet werden, um die geringste Beeingussung, bei kürzesten Schaltverbindungen zu erzielen. Darüber hinaus kann man durch Trennwände die Abschirmung verbessern.

Für die Gruppierung der Bauelemente bietet sich folgende Lösung an: Kreisförmig um den konischen Teil der Braunschen Röhre werden die Bedienungselemente, wie Poteniometer usw., untergebracht. Sie werden durch Rändelknöpfe betätigt, die aus muldenartigen Vertiefungen herausragen, wie aus Bild 1 und 2 zu ersehen. Ebenfalls kreisförmig um den zylindrischen Teil der Bildröhre werden die Verstärker und die Anschlüsse der Oszillografenröhre angeordnet. Den Abschluß bildet die Spannungsversorgung mit dem Transformator und der Drossel; die einzelnen Gruppen sind durch Abschirmwände getrennt.

Eine wertvolle Unterstützung für eine derartige Gruppierung bietet die Verwendung der Strahlröhre DG 7-31 bzw. DG 7-32. Ihr geringer Spannungsbedarf von nur 500 V vereinfacht den Aufbau des Netzteiles. In Verbindung mit der DG 7-32 erscheint auch die Verwendung der Subminiaturröhren sinnvoll, die durch ihre geringen Abmessungen sowie durch ihre elektrische und mechanische Stabilität hierzu passen. Die Schwierigkeiten durch Streufelder vom Netztransformator und Siebdrossel sind einerseits durch Abschirmwände und größtmöglichen Abstand vom Verstärkerteil ver-

ringert, andererseits wird durch Verwendung eines Ringkerntransformators und einer Ringkerndrossel die Streuung erheblich kleiner, außerdem wird beim Transformator die Streuung zudem rotationssymmetrisch.

Für die Verstärker kommen die Röhren 5718 (Triode) und 5840 (Pentode) in Frage. Für beide Plattenpaare wurden völlig gleiche Verstärker entwickelt. Die einzelnen Stufen werden nachfolgend beschrieben.

Die Subminiaturtriode 5718 als Katodeneingangsstufe

Beide Verstärker sind mit einer Katodeneingangsstufe nach Bild 4 ausgeführt. Diese Eingangsstufe kann eine maximale Wechselspannung von 15 V_{ss} verarbeiten, so daß eine Feinregulierung der Amplitude am Katodenwiderstand vorgenommen werden kann. Von dort wird die erste Verstärkerstufe über einen Elektrolytkondensator an-

Bild 1. Kleinstoszillograf in neuartiger Bauweise

gekoppelt. Zunächst erscheint die Verwendung eines solchen Kondensators als Koppelelement etwas gewagt, jedoch zeigt eine kurze Rechnung, daß dies bei Katodenkopplung durchaus möglich ist. Nach DIN 41230 ist für einen Elektrolytkondensator ein Reststrom

$$I_R = K_0 \cdot C + I_0$$

 $(K_0 \text{ für 35 V} = 0.15; I_0 \text{ für 35 V} = 5 \mu A)$

zulässig. Bei dem hier verwendeten 2-μF-Elektrolytkondensator kann das Glied K_o·C

vernachlässigt werden, daraus folgt IR $\sim 5 \, \mu A$. Bei einer Schwankung von $\pm 50 \, \%$ von IR ergibt das bei einem $50\text{-}k\Omega\text{-}Arbeitswiderstand}$ etwa 0,25 V Vorspannungsänderung, dieser Wert fällt hier nicht ins Gewicht. Der Verstärkungsfaktor dieser Katodenstufe beträgt 0,9.

Die Subminiaturpentode 5840 als Breitbandverstärker

Für den eigentlichen Breitbandverstärker sind zwei Stufen vorgesehen, wobei die zweite Stufe mit einer zusätzlichen Phasenumkehrröhre ausgerüstet ist. Bild 5 zeigt die Prinzipschaltung. Die erste Stufe (Vorstufe) verstärkt etwa 6fach, während die zweite Stufe (Endstufe) rund 15fach verstärkt, bei einer unteren Grenzfrequenz von 5 Hz und einer oberen Grenzfrequenz von 2 MHz. Entsprechend der Signalgröße der einzelnen Stufen ist auch die Siebung partiell unterteilt, so wird z. B. die Katodenstufe getrennt gespeist, während die Vorstufe eine zusätzliche Siebung gegenüber der Endstufe aufweist. Um die Grenzfrequenz möglichst weit hinauszuschieben, ist nur die erste mit der zweiten Stufe kapazitiv gekoppelt, während die Endstufe galvanisch mit der Phasenumkehrröhre verbunden ist. Deshalb kann der Arbeitspunkt am Gitter der zweiten Stufe durch eine veränderliche Gleichspannung eingestellt werden. Die Phasenumkehrröhre ist katodengekoppelt und erhält am Gitter ebenfalls eine einstellbare Gleichspannung zur Festlegung des Arbeitspunktes. Alle Stufen sind durch 1-kΩ-Katodenwiderstände gegengekoppelt, zusätzlich hierzu arbeitet eine sehr wirksame Gegenkopplung von der Anode der End-

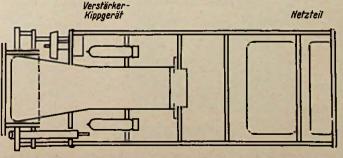


Bild 3. Prinzipielle Anordnung der Bauteile

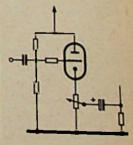
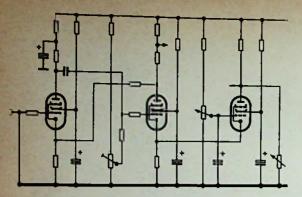



Bild 4. Prinzip der Katodeneingangsstufe

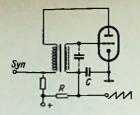


Bild 6. Sperrschwinger

Links: Bild 5. Grundschaltung der beiden Verstärker

stufe auf den Katodenwiderstand der Eingangsstufe. Als Gegengewicht zur Gegenkopplung ist die Phasenumkehrröhre mit einem Spannungsteiler belastet, von dem das Signal für die Synchronisationsröhre abgegriffen wird.

Vertikal- und Horizontalverstärker

Es wurde bereits erwähnt, daß Horizontalund Vertikalverstärker vollständig gleich aufgebaut sind, so daß Frequenzvergleiche u. ä. Messungen durchgeführt werden können. Für Sonderfälle kann der Horizontalverstärker auch durch eine fremde Kippspannung ausgesteuert werden. Beide Verstärker sind in der Lage, die für die gewünschte Strahlablenkung erforderliche Spannung ohne Amplitudenverzerrungen abzugeben. Hierbei ist zu bedenken, daß der Anodenstrom nicht ganz von Null bis zum doppelten Ruhestromwert ausgesteuert werden kann. Im allgemeinen wird die größtmögliche Anodenstromänderung A Ia max dem 1,5...1,8fachen Anodenruhestrom entsprechen. Es ist also

$$\Delta I_{a \text{ max}} = (1.5...1.8) \cdot I_{ao}$$

Bei einer Ablenkempfindlichkeit ε_{Ν1} ist für eine bestimmte Ablenkung durch die Meßspannung U₁ an den Y-Platten die Abspannung benutzen z. B. eine Gastriode mit Ladepentode, oder Multivibratorschaltungen, Sperrschwinger, Transitron-Miller-Integrator usw. Bei den meisten Schaltungen wird der Kippvorgang mit dem Anodenstrom von Hochvakuumröhren erreicht. Darüber hinaus gibt es Schaltungen, bei denen die rhythmische Aufladung eines Kondensators durch den Gitterstrom einer Röhre vorgenommen wird (Sperrschwinger). Bei dieser aus der Schaltungstechnik von Fernsehempfängern

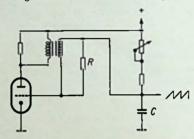


Bild 7. Prinzipschaltung des im Oszillografen verwendeten Sperrschwingers

bekannten Anordnung wird der Kippvorgang in der Weise herbeigeführt, daß man z. B. in einer Triodenschwingschaltung nach Bild 6 die Rückkopplung über den Schwingeinsatz hinaus so fest macht, daß durch den

kräftigen Gitterstrom die Spannung am Kondensator C im Gitterkreis so stark negativ wird, daß die Schwingungen aussetzen. Der Arbeitspunkt läuft dabei in ein Gebiet zu geringer Steilheit, die Bedingungen zur Rückkopplung sind nicht mehr erfüllt. Nun kann sich der Kondensator über den Arbeitswiderstand R wieder ent-

Bild e a. Der Sperrschwingertransformator im Größenvergleich zu einer Zündholzschachtel und zu der verwendeten Subminiaturröhre

lenkspannung U_y erforderlich. Sie ergibt sich aus der Beziehung

$$U_y = \frac{U_1}{\epsilon_{N1}}$$

Bei einer Ablenkempfindlichkeit von $\epsilon_{\rm N1}=0.35~{\rm mm/V}$ ist für eine Strahlablenkung von 50 mm eine Spannung 50/0,35 = 140 $V_{\rm ss}$ notwendig. In der symmetrischen Endstufe entfällt auf jede Röhre 70 $V_{\rm ss}$ -Ein Vergleich mit den Kennlinien der 5814 zeigt, daß diese Forderungen erfüllt werden können.

Allgemeine Betrachtungen über die Zeitablenkung

Zur Zeitablenkung benötigt man eine Spannung, die bis zu einem einstellbaren Wert zeitlinear ansteigt und dann möglichst rasch auf Null zurückfällt. Die Amplitude einer solchen Kippspannung interessiert in diesem Zusammenhang nicht so sehr, da der Verstärker ohnehin vorhanden ist. Übliche Schaltungen zur Erzeugung einer Kipp-

Bild 8 b. Bewicklung des Sporrschwinger-Transformators. Der jeweilige Index stimmt mit der Numerierung in der Schaltung Bild 10 überein. Das Zusammenschalten der Wicklungen erfolgt durch Verbinden gleichbezeichneter Anschlüsse. 5 Lagen "a", je Lage 60 Wdg 0,1 CuL; Zwischenloge 0,06 mm Olpapier — 5 Lagen "b" desgleichen. Blechpaket: M 20, Mu-Metali

laden, also weniger negativ werden. Sobald dabei wieder der Arbeitspunkt zu einer Steilheit gelangt, bei der die Schwingungserregung möglich ist, beginnt dieser Vorgang von neuem.

Die Sperrschwingerschaltung mit der Subminiaturtriode 5718

Für eine derartige Sperrschwingerschaltung ist die Subminiaturröhre Valvo 5718 geeignet.

Eine hohe Gitterbelastbarkelt neben der relativ großen Steilheit sind die Hauptmerkmale dieser Hf-Oszillatorröhre. Bei dem angewendeten Sperrschwinger Bild 7 liegt das RC-Glied des Gitterkreises an eine Spannung von + 160 V. Die Kippamplitude durchläuft in ihrem Bereich von -8 V bis 0 V einen praktisch linearen Bereich, der sich auch bei niedrigen Frequenzen nicht ändert.

Bei höheren Kippfrequenzen wird der zulässige maximale Gitterstrom noch nicht erreicht, wichtig ist jedoch, daß der Gitter-Katodenkreis und der Anoden-Katodenkreis sehr niederohmig ist. Das Kippgerät umfaßt einen Frequenzbereich von etwa 10 Hz bis 50 kHz. Dieser Frequenzumfang wird von einem Sperrschwinger-Transformator überstrichen, der durch seine Kleinstausführung (M 20) zu den Subminiaturröhren paßt (Bild 8a).

An diesen Transformator werden hinsichtlich Induktivität, Kopplung und Eisenverluste
große Anforderungen gestellt, aus diesem
Grunde wurde ein Mu-Metallkern verwendet.
Die feste Kopplung wurde erreicht, durch
wechselndes Wickeln der Primär- und Sekundärspule nach Bild 8b. Um über den gesamten Frequenzbereich eine etwa konstante
Amplitude zu erzielen, arbeitet der Sperrschwingertransformator mit veränderlicher
Induktivität, so daß beim Umschalten des
frequenzbestimmenden Kondensators eine
entsprechend geänderte Ladungsmenge geliefert wird.

Synchronisation

Die Synchronisation erfolgt über eine Subminiaturröhre 5840. Diese Pentode ist direkt an die Anode der Sperrschwingerröhre an-

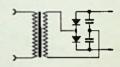


Bild 9. Spannungsverdoppler-Schaltung

gekoppelt, die ihrerseits über ein einstellbares Potentiometer vom Vertikalverstärker gespeist wird.

Netzteil

Wie bereits erwähnt, erfolgt die Spannungsversorgung durch einen Ringkern-Transformator von ca. 30 VA. Durch die geringe Streuung war es möglich, mit einer relativ hohen Magnetisierung zu arbeiten und somit zu kleinen Abmessungen zu gelangen.

Die Anodenspannungsversorgung der Verstärkerröhren geschieht über eine 250-V-Wicklung und einen Brückengleichrichter, der als Flachbauteil ausgeführt ist und sehr geringe Abmessungen hat. Zur Siebung dient eine Ringkerndrossel (Mu-Metall), auch hier ist die runde Bauform bei hoher Induktivität, besonders günstig. Darüber hinaus sind die Eingangsstufen zusätzlich gesiebt.

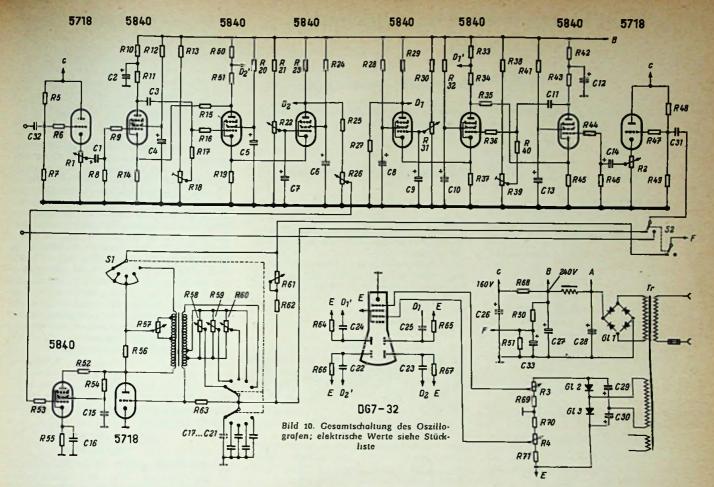

Die Spannungsversorgung der Elektronenstrahlröhre ist über eine getrennte Wicklung für 250 V/2 mA durchgeführt. Eine Verdopplerschaltung nach Bild 9 liefert dann eine Spannung von 600 V.

Bild 10 zeigt die vollständige Schaltung des Oszillografen. Für die Bemessung der elektrischen Einzelteile gelten die darunter befindlichen Stücklisten.

(Fortsetzung folgt)

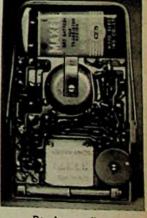
*

Die Fortsetzung dieser Arbeit im nächsten Heft der FUNKSCHAU bringt ausführliche Konstruktionszeichnungen für das Spezialchassis und für das Gehäuse mit den Bedienungseiementen. Der Industriemäßig ausgearbeitete Zeichnungssatz umfaßt ferner 7 Stücklisten mit den mechanischen Einzelteilen, so daß ein exakter Nachbau möglich ist.

Stückliste für die elektrischen Einzelteile des Kleinstoszillografen

Stu	causte fur die	elektrischen	Einzelteile des	Kleinstos	zillografen
Widers	tände		R 49	1 ΜΩ	0,1 W
R 1	- 1.0 1/		R 50	5,6 kΩ	1 W
R 2	5 kΩ lin.	0,2 W	R 51	20 kΩ	2 W
R 3	5 kΩ lin.	0,2 W	R 52	20 kΩ	0.25 W
R 4	50 kΩ lin.	0,2 W	R 53	5 kΩ	0,25 W
R 5	50 kΩ lin.	0,2 W	R 54	100 kΩ	0,25 W
R 6	10 MΩ 20 kΩ	0,1 W	R 55	2 kΩ	0,25 W
R 7	1 ΜΩ	0,1 W	R 56	1 kΩ	0,25 W
R 8	50 kΩ	0,1 W 0,1 W	R 57	500 Ω lin.	
R 9	20 kΩ	0,1 W 0,1 W	R 58	1 kΩ lin.	
R 10	18 kΩ	0,1 W	R 59	1 kΩ lin.	
R 11	10 kΩ	0,25 W	R 60	1 kΩ lin.	0,2 W
R 12	100 kΩ	0,25 W	R 61	500 kΩ lin.	0,2 W
R 13	500 kΩ	0,25 W	R 62	100 kΩ	0,25 W
R 14	400 Ω	0,25 W	R 63	1 kΩ	0,1 W
R 15	66 kΩ	0,5 W	R 84	5 MΩ	0,1 W
R 16	20 kΩ	0,1 W	R 65	5 MΩ	0,1 W
R 17	1 ΜΩ	0,1 W	R 66	5 MΩ	0,1 W
R 18	100 kΩ lin.	0,2 W	R 67	5 MΩ	0,1 W
R 19	1 kΩ	0.25 W	R 68	5 kΩ	2 W
R 20	68 kΩ	0,25 W	R 69	18 kΩ	0,25 W
R 21	600 kΩ	0,25 W	R 70	68 kΩ	0,25 W
R 22	100 kΩ lin.	0,2 W	R 71	470 kΩ	0,25 W
R 23	12 kΩ	0,25 W	74		
R 24	68 kΩ	0,25 W	Kondensa	toren	
R 25	40 kΩ	0,25 W	C 1	2 μF	35 V
R 26	30 kΩ lin.	0,2 W	C 2	1 μF	240 V
R 27	68 kΩ	0,5 W	C 3	0,1 µF	250 V
R 28	68 kΩ	0,25 W	C 4	0,5 μF	160 V
R 29	12 kΩ	0,5 W	C 5	0,5 µF	160 V
R 30	600 kΩ	0,25 W	C 6	0,5 μF	160 V
R 31	100 kΩ lin.	0,2 W	C 7	0,5 µF	35 V
R 32	68 kΩ	0,25 W	C 8	0,5 μF	180 V
R 33	10 kΩ	0,5 W	C 9	0,5 μF	35 V
R 35	2 kΩ	0,25 W	C 10	0,5 μF	160 V
R 36	68 kΩ	0,5 W	C 11	0,1 µF	240 V
R 37	20 kΩ 1 kΩ	0,1 W	C 12		240 V
R 38	500 kΩ	0,25 W	C 13	0,5 μF	160 V
R 39	100 kΩ lin.	0,25 W	C 14	2 μF	35 V 160 V
R 40	1 ΜΩ	0,2 W	C 15		35 V
R 41	100 kΩ	0,1 W		10 μF 5 nF	160 V
R 42	18 kΩ	0,25 W	C 17		160 V
R 43	10 kΩ	0,25 W	1		160 V
R 44	20 kΩ	0,25 W 0,1 W	C 19 C 20		160 V
R 45	400 Ω	0,1 W 0,25 W	C 21		160 V
R 46	50 kΩ	0,1 W			500 V
R 47	20 kΩ	0,1 W			600 V
R 48	10 MΩ	0,1 W			500 V
		A17 44	0.1		

C 25 C 26 C 27 C 28 C 29 C 30 C 31 C 32 C 33	25 nF 8 µF 32 µF 32 µF 4 µF 4 µF 0,1 µF 0,1 µF 4 µF	500 V 250 V 350 V 350 V 450 V 450 V 160 V 250 V	1 Ringkern-Netztransformator, 1×6,3 V Heizung (1,5 A) 250 V Anodenspannung 70 mA 250 V Ablenkspannung 2 mA 1 Ringkerndrossel, 5 H 1 Sperrschwingertransformator, M 20, Mu-Metall 1 SSF-Gleichrichter, B 250 C 100 2 Stabgleichrichter 300 C 2
Die folge	nden Kapa	ızitäten si	nd Elektrolytkondensatoren in Kleinstausführung:
C 1, C 2,	C 4C 10,	C 12C	14, C 26C 30, C 33 (vgl. Gesamtschaltung Bild 10).


Transistor-Taschensuper noch kleiner

Der bekannte Sony-Taschensuper ist in seiner neuesten Form TR 610 noch flacher, leichter und hübscher im Aussehen geworden. Er findet bequem in der Hand Platz und kann mit einem Finger bedient werden, denn Lautstärkeregier und Abstimmknopf liegen in einer Achsenlinie (Bild 1). Mit Hilfe eines Bügels kann des Gerät als kleiner Heimempfänger aufgestellt oder angehängt werden oder man trägt ihn an diesem Bügel in der Hand, wenn man ihn nicht einfach in die Außentasche eines Hemdes steckt, wo er gut Platz findet.

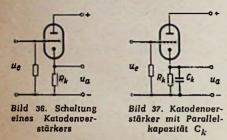
Die maximale Ausgangsleistung der Gegentakt-Endstufe beträgt 80 mW. Geht man auf etwa 50 mW zurück, so erhält man eine erstaunlich klangreine Wiedergabe bei ansehnlicher Lautstärke. Die kleine eingebaute 9-V-Batterie ergibt 100 Betriebsstunden. Die gedruckte Schaltung (Blid 2) enthält 6 Transistoren und ist für den Bereich von 535...1605 kHz ausgelegt. Der Sony TR 610 wird nach Wunsch mit rotem, schwarzem oder grünem Gehäuse mit schlichter Goldverzierung geliefert (Tetron-Elektronik GmbH, Nürnberg).

Bild 1. So zierlich, daß er in eine Damenhand paßt, ist der neue Sony-Taschensuper. Mit dem Daumen kann man dabei Lautstärke- und Abstimmknopf betätigen.

Der innenaufbau

Einführung in die Impulstechnik

5. Teil

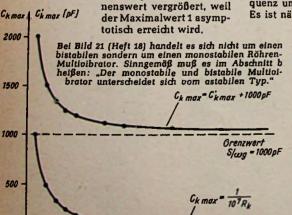

Von Dipl.-Ing. A. Lennartz

Bisher erschienene Beiträge dieser Reihe:

Teil	FUNKSCHAU 1958	Seite	Bilder
1	Heft 16	375	1 bis 9
2	Heft 17	407	10 bis 14
3	Heft 18	427	15 bis 23
4	Heft 19	449	24 bis 35

9. Die Impulsverstärkung

An die zur Übertragung von Impulsen verwendeten Verstärker werden im allgemeinen folgende Forderungen gestellt:


- a) Lineare Aussteuerung in einem möglichst großen Bereich
- b) Möglichst geringe Formverzerrungen durch die Kopplungselemente
- c) Übertragung des Gleichstrominhaltes Oft wird noch zusätzlich gefordert:
- d) Gleichphasigkeit zwischen Eingangs- und Ausgangsspannung
- e) Verstärkungsgrad größer als 1:1.

Die Forderungen a) bis d) lassen sich durch den Katodenverstärker realisieren. Dieser hat neben einer großen Leistungsverstärkung den Vorteil, daß der Einfluß von Schalt- und Par-allelkapazitäten weitgehend herabgemindert wird. Bild 36 zeigt die Prinzipschaltung. Da man fast durchweg Röhren mit großer Steilheit hierfür verwendet, kann man folgende Vereinfachungen einführen:

$$S \gg \frac{1}{R_k} \, .$$

Diese Forderung muß schon im Hinblick auf einen möglichst geringen Amplitudenverlust gestellt werden, da die maximale Verstärkung beim Katodenverstärker nur 1:1 beträgt.

Außerdem gilt fast immer R_i ≫ R_k, da von einem bestimmten Wert an eine Erhöhung des Widerstandes Rk die Ver-

stärkung nicht mehr nen-

Bild 38. Vergleich der für eine Grenzfrequenz von $f_g=1,5\,\mathrm{MHz}$ maximal zulässigen Kapazitäten beim Katodenverstärker und bei der Kombination als Funktion des Widerstandes Rk

1500

1000

Daraus ergibt sich für die Verstärkung des Katodenverstärkers:

$$V = \frac{u_a}{u_c} = \frac{S}{S + 1/R_k}$$

$$R_a = \frac{R_k}{1 + S R_k}$$

Wie man sieht, wird der Ausgangswiderstand wesentlich kleiner als der Katodenwiderstand Rk und dies um so mehr, je größer die Steilheit der Röhre ist.

Die Verminderung von Schalt- und Leitungskapazitäten, die Rk parallel liegen, ergibt sich. beim Durchrechnen der in Bild 37 dargestellten Schaltung. Es wird:

$$\mathfrak{B} = \frac{S}{S + \frac{1}{R_k} + j\omega C_k}$$

Amplitude wie üblich 0,3 betragen (gegenüber der Frequenz Null). Hieraus ergibt sich für die maximal zulässige Kapazität Ck max die Beziehung:

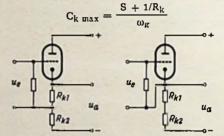


Bild 39. Katodenverstärker mit Teilgegenkopplung

Bild 40. Katodenverstärker ohne Gegenkopp-

Wenn man dagegen die einfache Parallelschaltung des Widerstandes R_k mit der Kapazität C_k' betrachtet, dann ergibt sich hierbei für die auf die Grenzfrequenz ωg bezogene höchstzulässige Kapazität C'k max:

$$C'_{k \; max} = \frac{1}{R_k \; \omega_g}$$

Man sieht aus den beiden Beziehungen, daß beim Katodenverstärker die zulässige maximale Parallelkapazität für dieselbe Grenzfrequenz um das additive Glied S/wg größer ist. Es ist nämlich:

$$C_{k \max} = C'_{k \max} + \frac{S}{\omega_g}.$$

Für größer werdende Katodenwiderstände Rk strebt $C_{k \text{ max}}$ dem Grenzwert $\frac{S}{\omega_g}$ zu. Für die Kombination selbst wird C'k max proportional dem Leitwert R kleiner.

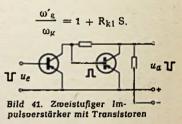
2500 Rk (S2)

In Bild 38 ist ein praktisches Beispiel im Diagramm dargestellt. Für eine Grenzfrequenz $f_g = 1.5 \text{ MHz}$ sind sowohl die maximal zulässigen Parallelkapazitäten für den Katodenverstärker als auch für die RC-Kombination allein als Funktion des Katodenwiderstandes R_k aufgetragen. Als Röhrensteilheit wurde $S=10\ \text{mA/V}$ angenommen. Man erkennt die linearisierende Wirkung des Katodenverstärkers. Selbst bei hohen Katodenwiderständen ergibt sich noch eine maximal zulässige Kapazität von 1000 pF, während sie bei der Kombination auf Null abgesunken ist. Die in Bild 36 und 37 an Rk abfallende Gleichspannung wird meist nicht der erforderlichen Gittervorspannung entsprechen. Diese ist dann auf bekannte Art zu erzeugen, z. B. durch Abgriff an Rk.

Obwohl durch den Katodenverstärker eine beachtliche Leistungsverstärkung möglich ist, kann, wie bereits erwähnt, keine Spannungsverstärkung durch ihn erfolgen, Dieser Nachteil ist in einer Kombinationsschaltung zu vermeiden. Hierbei wird nicht die gesamte am Katodenwiderstand abfallende Spannung gegengekoppelt, sondern nur ein Teil derselben. Die Schaltung ist in Bild 39 dargestellt. Die Ausgangsspannung ua fällt an der Summe der beiden Teilwiderstände Rk1 + Rk2 ab, wahrend nur der Teil der Spannung gegengekoppelt wird, der an R_{k1} abfällt. Durch die Bemessung von R_{k1} und R_{k2} hat man die Möglichkeit, den Vorteil der Spannungsverstärkung mit dem Nachteil der geringeren Linearisierung in Einklang mit den Anforderungen an die Schaltung zu bringen.

Für die Verstärkung ergibt sich:

$$V' = \frac{V}{1 - \beta V}$$


Hierin ist V die Verstärkung ohne Gegenkopplung und β der Gegenkopplungsgrad, für den die Beziehung

$$\beta = -\frac{R_{k1}}{R_{k1} + R_{k2}}$$

gilt. Die Verstärkung V ist auf die Schaltung in Bild 40 bezogen. Wird das Verhältnis der Verstärkungen gebildet, dann ergibt sich:

$$\frac{V'}{V} = \frac{1}{1-\beta V} = \frac{1}{1+R_{kl}\,S} \,. \label{eq:volume}$$

Die Erhöhung der Grenzfrequenz bei Vorhandensein einer Parallelkapazität zum Widerstand Rk1 + Rk2 wird durch das Verhältnis der Grenzfrequenzen vom gegengekoppelten Verstärker nach Bild 39 zum nicht gegengekoppelten nach Bild 40 definiert:

Man erkennt hieraus, daß die Grenzfrequenz beim gegengekoppelten Verstärker im selben Maße steigt, wie seine Verstärkung sinkt.

Grundsätzlich kann man für die Verstärkung von Impulsen auch normale Röhrenverstärker mit der entsprechenden Bandbreite verwenden, jedoch ergibt sich hierbei für die Übertragung des Gleichstrominhaltes das Problem der Stromversorgung der einzelnen Verstär-kerstufen. Einfacher liegen die Verhältnisse bei Verwendung von Transistoren.

Bild 41 zeigt einen zweistufigen Impulsverstärker mit Transistoren. Der Gleichstrominhalt der Impulse wird übertragen, da keine gleichstromtrennenden Kopplungsglieder verwendet zu werden brauchen. Am Eingang des Verstärkers liegt ein negativer Impuls. Da der Transistor ebenso wie die Röhre eine Ausgangsspannung liefert, die gegen die Eingangsspannung um 180º phasenverschoben ist, hat die Ausgangsspannung des Verstärkers dieselbe Phasenlage wie seine Eingangsspannung. Es wird also wieder ein negativer Im-(Fortsetzung folgt) puls abgegeben.

Pflichtempfangs-Schaltungen

Von Ing. G. Boye, Deutsche Philips GmbH

Die nachstehenden Ausführungen, die wegen ihrer vielen Schaltungsbeispiele und Berechnungsgrundlagen einen wichtigen Beitrag zur Planung größerer Ela-Anlagen darstellen, wurden uns von der Ela-Hauszeitschrift der Deutschen Philips GmbH zur Verfügung gestellt.

Unter Pflichtempfangs-Schaltungen versteht man bestimmte Lautsprecher-Anschlußschaltungen, bei denen man von der Zentrale aus alle Lautsprecher zwangsweise wieder voll einschalten kann, auch wenn sie an Ort und Stelle ausgeschaltet oder auf eine geringere Lautstärke heruntergeregelt sind. Wichtige Nachrichten können dann immer über alle Lautsprecher und mit voller Lautstärke übertragen werden. Obwohl diese Technik bei elektroakustischen Übertragungsanlagen bereits seit langem angewandt wird, sind ihre Grundlagen dennoch nicht überall hinreichend bekannt. Daher soll hier für alle, die Lautsprecheranlagen planen und installieren, gezeigt werden, welche Möglichkeiten bestehen und wie man die leider auch häufig auftretenden Schwierigkeiten überwindet.

Bei Schaltungen mit Pflichtempfang muß man zwei verschiedene Anschlußarten der Lautsprecher unterscheiden und zwar:

A. Ausschaltung des Lautsprechers am Ort durch einen Schalter oder

B. Lautstärkeregelung und gleichzeitig Ausschaltung durch einen Lautstärkeregler

A 1. Einpolige Lautsprecher-Abschaltung

Die einfachste Art der Abschaltung ist in Bild 1 dargestellt. In der gezeichneten Schalterstellung ist der Lautsprecher ausgeschaltet und über den in der Zentrale befindlichen Pflichtrufschalter P kurzgeschlossen. Die Einschaltung kann nun wahlweise am Lautsprecher selbst durch den Schalter L oder an der Zentrale durch den Schalter P erfolgen. Diese Schaltung ist ohne jede Schwierigkeit durchzuführen und erfordert nur ein dreiadriges Anschlußkabel. Sie gleicht der in der Installationstechnik bekannten Wechselschaltung zum Einschalten einer Lampe von zwei verschiedenen Stellen.

Die ersten Schwierigkeiten treten auf, wenn zwischen der Zentrale Z und der Verteilung V zu den einzelnen Lautsprechern eine längere Zuleitung erforderlich wird (Bild 2). Ist zum Beispiel von den drei Lautsprechern nur einer eingeschaltet, so fließt ein Strom über die Leitung a zu diesem Lautsprecher und über b zum Verstärker zurück. Dadurch entsteht ein Spannungsabfall auch an der Ader c. Dieser gelangt über den Schalter P an die a-Anschlüsse der abgeschalteten Lautsprecher und läßt diese leise mitspielen. Die dabei entstehende Lautstärke ist abhängig von der Stromstärke und vom Leitungswiderstand der Ader c und vergrößert sich bei größerem Strom, größerer Leitungslänge oder geringerem Leiterquerschnitt. Somit können wir zusammenfassend feststellen:

Vorteil: geringer Leitungsbedarf, einfache Verdrahtung

Nachteil: Bei langen Leitungen und insbesondere bei Unsymmetrie des Verstärkerausganges tritt leises Übersprechen auf die ausgeschalteten Lautsprecher auf.

Abhilfe: Ausreichend großen Leitungsquerschnitt verwenden.

Leitungsbedarf: Y-Draht 3×0.8 mm ϕ oder ähnliches Kabel.

A 2. Zweipolige Lautsprecher-Abschaltung

Die unter A 1 aufgeführten Schwierigkeiten zur Unterdrückung des Übersprechens werden durch zweiadrige Ausführung der Pflichtempfangsleitung ausgeschlossen (Bild 3 und 4).

Vorteil: Höchstmögliche Sicherheit gegen Übersprechen bei den abgeschalteten Lautsprechern.

Nachteil: Höherer Leitungsumfang und Schalterbedarf als bei A1.

Leitungsbedarf: Zwei paarig verseilte Leitungen, z. B. zwei Leitungen Y-Draht 2×0.8 mm ϕ oder eine Leitung YYM $2 \times 2 \times 0.8$ mm ϕ . Bei nicht-paarig verseilten Leitungen, z. B. NYM 4×1 mm², besteht trotz vieradriger Leitung die Gefahr des Übersprechens und zwar auf induktivem Wege, besonders wenn die Leitungen sehr lang und viele Lautsprecher angeschaltet sind.

B. Pflichtempfang bei Lautsprechern mit Reglern

Bei Pflichtempfangsschaltungen mit Lautstärkereglern an den Lautsprechern ist die Grundschaltung ähnlich wie bei A. Während Lautsprecher-Schalter, wie sie bei A benutzt wurden, in der Praxis heute selten gebräuchlich sind, wird die Pflichtempfangs-Schaltung mit Lautstärkereglern praktisch in jeder Hotel-, Gaststätten-, Krankenhaus-, Schulfunk- oder Betriebsrufanlage angewandt. Aus diesem Grunde soll auf die entsprechenden Schaltungsmöglichkeiten, ihre Berechnung, ihre Schwierigkeiten und die Abhilfsmaßnahmen dagegen ausführlicher eingegangen werden, als im Fall A.

Wir besprechen die Aufgabe zunächst an einer Prinzipschaltung (Bild 5). In der Ruhestellung des Pflichtrufschalters P liegt der Fußpunkt des Reglers über die Ader b an der Ader c. Der Regler ist in Betrieb. In der Arbeitsstellung des Pflichtrufschalters liegt der Fußpunkt des Reglers über die Ader b an der Ader a und der Regler ist praktisch kurzgeschlossen und unwirksam.

Ein grundsätzlicher Nachteil besteht darin, daß der Leitungswiderstand der b-Ader zum Reglerwiderstand hinzutritt. Ist der Regler auf Null gestellt, so entsteht an der b-Ader infolge ihres Widerstandes ein Spannungsabfall, der über die c-Ader an den Lautsprechern wirksam wird und somit je nach der Höhe des Spannungsabfalles zu hören ist. Wählt man einen ausreichend großen Drahtquerschnitt, so kann der Leitungswiderstand klein und das Übersprechen gering gehalten werden.

Rechenbeispiel: Ein 6-W-Lautsprecher an 100 m Leitung 3×0.6 mm ϕ .

Leitungswiderstand der b-Ader:

$$R = \frac{l}{\kappa F} = \frac{100}{56 \times 0.3} = 6.5 \Omega$$

Strom in der b-Ader:

$$I = \frac{U}{L} = \frac{100}{1600} = 0.065 \text{ A}$$

Spannungsabfall an der b-Ader:

$$U = I \times R = 0.065 \times 6.5 = 0.4 \text{ V}$$

Übersprechdämpfung am Lautsprecher:

20 lg
$$\frac{U_1}{U_2} = 48 \, dB$$

Bild 1. Prinzipschaltung für Pflichtempfang bei Ausschaltung am Ort des Lautsprechers und Pflichtruf-Schalter in der Zentrale

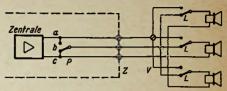


Bild 2. Pflichtempfangs-Schaltung bei mehreren örtlich abschaltbaren Lautsprechern

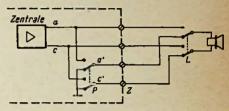


Bild 3. Pflichtempfangs-Schaltung mit einem Ausschalter am Ort des Lautsprechers und mit einem zweipoligen Pflichtruf-Schalter in der Zentrale

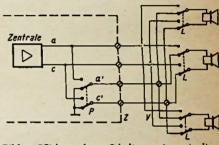


Bild 4. Pflichtempfangs-Schaltung mit zweipoligen Abschaltern am Ort der Lautsprecher und mit einem zweipoligen Pflichtruf-Schalter in der Zentrale

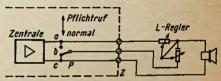


Bild 5. Prinzip einer Pflichtempfangs-Schaltung bei Lautstärkeregelung am Ort des Lautsprechers

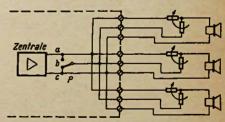


Bild 6. Pflichtempfangs-Schaltung bei mehreren Lautsprechern mit örtlichem Lautstärkeregler und bei sternförmiger Leitungsverteilung in der Zentrale

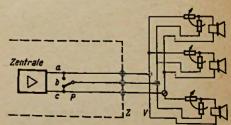


Bild 7. Pflichtempfangs-Schaltung bei mehreren Lautsprechern mit örtlichem Lautstärkeregler mit gemeinsamer Zuleitung über große Entfernung bis zur sternförmigen Verteilung in der Nähe der Lautsprecher

Aufgenommene Obersprechleistung etwa 0,1 mW. Bei Verwendung einer gleichlangen, aber dickeren Leitung 3 × 0,8 mm ϕ erhalten wir die Obersprechdsmpfung am Lautsprecher zu 53 dB und die Obersprechleistung sinkt auf etwa 0,025 mW.

B 1. Sternförmige Lautsprecherspeisung von der Zentrale aus

Jeder einzelne Lautsprecher hat eine eigene Zuleitung von der Zentrale aus (Bild 6). Eine Verkopplung mehrerer Lautsprecherkreise ist hierbei nicht möglich.

Vorteil: Sehr geringe Stärke des Übersprechens bei zugedrehtem Regler, wenn der Drahtquerschnitt ausreichend bemessen ist.

Nachteil: Hoher Leitungsaufwand.

Leitungsbedarf: Y-Draht 3×0.6 mm ϕ oder 3×0.8 mm ϕ (je nach Länge) oder ähnliches Kabel für jeden einzelnen Lautsprecher.

B 2. Parallele Lautsprecherspeisung

Über die Leitungen von Z bis V werden alle Lautsprecher gemeinsam gespeist (Bild 7). Infolgedessen wird der Spannungsabfall an der gemeinsamen b-Ader von der Gesamtstromstärke aller Lautsprecher bestimmt.

Vorteil: Geringer Leitungsbedarf.

Nachteil: Merkliches Übersprechen in den Lautsprechern, Im Anschluß an das vorige

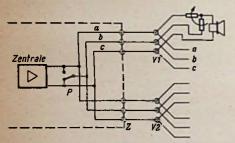


Bild 8. Pflichtempfangs-Schaltung wie Bild 7 bei gruppenweiser Zusammenfassung der Lautsprecher an mehreren Unterverteilungsstellen

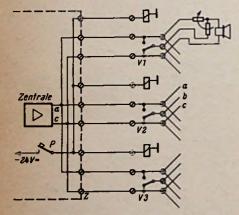


Bild 9. Pflichtruf-Einschaltung durch je ein Relais an den verschiedenen Unterverteilungsstellen

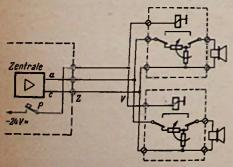


Bild 10. Pflichtruf-Einschaltung durch ein Relais für jeden einzelnen Lautsprecher, vollständige Unterdrückung des Übersprechens

Zahlenbeispiel beträgt bei 100 m Leitungslänge von Z bis V mit einem Kabel 3 X 0,8 mm Ø für 20 Lautsprecher von je 6 W Leistung der Übersprechabstand 27 dB. Das entspricht einer Übersprechleistung von 13 mW. Berücksichtigt man bei der Rechnung auch noch den Widerstand der Verteilerleitungen, so erhält man einen noch größeren Wert für das Übersprechen.

Abhilfe I: Der Querschnitt der Speiseleitung Z...V ist zu vergrößern. Im Rechenbeispiel von B1 erhält man bei einer Leitung 3 × 1,5 mm² 39 dB bzw. 0,9 mW je Lautsprecher. Ferner sind die Leitungen vom Verzweigungspunkt aus möglichst sternförmig zu verteilen. Dies ist besonders bei Anlagen in Hotels erforderlich, weil in den Zimmern fast absolute Ruhe herrscht und daher schon sehr leises Übersprechen deutlich wahrgenommen wird.

Leitungsbedarf: Kabelweg Z...V mit NYA 3×1.5 mm². Lautsprecherverteilung Y-Draht 3×0.8 mm ϕ oder ähnliches Kabel.

Abhilfe II: Eine weitere Verbesserung ist durch Aufteilen der Lautsprecher in mehrere Gruppen möglich, die jeweils über eigene Leitungen von der Zentrale gespeist werden (Bild 8).

Leitungsbedarf: Kabelweg von der Zentrale bis zur Verteilung NYA 3 \times 1 mm² oder 3 \times 1,5 mm², Lautsprecherverteilung Y-Draht 3 \times 0,8 mm ϕ oder ähnliches Kabel.

Abhilfe III: Bei sehr langen Leitungen zwischen der Zentrale und den Lautsprechern muß der Leitungsquerschnitt so groß werden, daß er wirtschaftlich nicht zu vertreten ist. In diesem Fall empfiehlt sich eine Relaisschaltung in Verbindung mit der Bildung von Lautsprecherzentren (Bild 9). Als Relais empfiehlt sich etwa das Kleinrelais von Haller, Typ 43, Kontaktbestückung 1 × u.

Leitungsbedarf: Kabelweg von der Zentrale bis zur Verteilung jeweils Y-Draht 2×0.8 mm ϕ oder 2×1 mm ϕ oder ähnliches Kabel. Dazu Y-Draht 2×0.6 mm ϕ für jedes Relais. Lautsprecherverteilung etwa Y-Draht 3×0.8 mm ϕ .

Abhilfe IV: Vollständig verhindern kann man das Übersprechen, wenn man jedem Lautsprecher ein eigenes Relais zuordnet (Bild 10). In den meisten Fällen ist diese Lösung allerdings vom wirtschaftlichen Gesichtspunkt aus nicht vertretbar. Der Vollständigkeit halber wird sie jedoch besprochen. Als Relais empfiehlt sich etwa das Kleinrelais von Haller, Typ 520, Kontaktbestückung 2 × u.

Leitungsbedarf: Lautsprecherleitung Y-Draht 2×0.8 mm ϕ bis NYA 2×1.5 mm³ oder ähnliches Kabel, Relais-Leitung Y-Draht 2×0.6 mm ϕ .

Abschätzung der Übersprechdämpfung: Die Stärke des Übersprechens läßt sich annähernd in folgender Weise berechnen:

Übersprechspannung $U = \frac{N \cdot l}{5600 \cdot F} [V]$

Dabei bedeuten:

N die angeschlossene Lautsprecherlast in W

l die wirksame Länge der b-Ader in Metern

F den Querschnitt der b-Ader in mm²

Die zu erwartende Übersprechdämpfung und die bei zugedrehtem Regler aufgenommene Lautsprecherleistung sind für verschiedene Werte der Übersprechspannung und des Anpassungswiderstandes in einer Tabelle zusammengestellt. Bei jeder Anlage sollte man sich vor der Installation und nicht erst nach späteren Reklamationen über die Stärke des zwangsläufigen Übersprechens und über die Abhängigkeit der Lautstärke vom Installationsaufwand klar werden.

Welche der oben beschriebenen Schaltungsarten in einem konkreten Fall wirklich verwendet werden soll, hängt weitgehend von den jeweiligen Gegebenheiten ab. Die Entscheidung wird im wesentlichen durch die zulässige Stärke des Übersprechens bei zugedrehtem Regler oder abgeschaltetem Lautsprecher bestimmt. Wenn die örtlichen Störgeräusche sehr leise sind, wie es z. B. in Hotels und Krankenhäusern der Fall ist, so muß das Übersprechen sehr stark gedämpft werden. In Schulen und Gaststätten reicht gewöhnlich eine schwächere Dämpfung aus. Die Musikübertragung während der Arbeit in Industriebetrieben, in denen die Störgeräusche recht laut sind, erfordert erfahrungsgemäß den geringsten Aufwand bei der Dämpfung des Übersprechens.

Obersprechdämpfung und Lautsprecherleistung in Abhängigkeit von der Übersprechspannung

Übersprech- spannung Ü in V	Obersprech- dämpfung in dB	Vom Lautsprecher aufgenommene Leistung in mW				
		bei einem Anpassungswiderstand von				
		6400 Ω	3200 Ω	1600 Ω	1000 Ω	500 Ω
0,1	60	0,001	0,003	0,008	0,01	0,02
0,15	56	0,004	0,008	0,015	0,025	0,05
0,2	54	0,008	0,012	0,025	0,04	0,08
0,3	50	0,014	0,028	0,055	0,09	0,18
0,4	48	0,025	0,05	0,095	0,16	0,32
0,5	46	0,04	80,0	0,15	0,25	0,50
0,7	43	0,08	0,15	0,3	0,5	1,00
1,0	40	0,15	0,3	0,6	1,00	2,00
1,5	38	0,35	0,7	1,35	2,25	4,50
2,0	34	0,6	1,25	2,5	4,00	8,00
3,0	30	1,4	2,7	5,5	9,00	18,00
4,0	28	2,5	5,00	9,5	16,00	32,00
5.0	26	4,00	8,00	15,00	25,00	50,00
6,0	24	5,50	11,00	22,00	38,00	72,00
7.0	29	8,00	15,00	30,00	50,00	100,00
8,0	22	10,00	20,00	39,00	84,00	128,00
8,0	21	12,50	25,00	49,00	81,00	162,00
10,0	20	15,00	30,00	60,00	100,00	200,00

Die Angaben gelten für eine Verstärker-Ausgangsspannung von 100 V

Automatische Scharfabstimmung beim Wega-Fernsehautomat "Wegavision"

Von Manfred Tiesnes, Wega-Radio GmbH, Stuttgart

Im folgenden wird eine weitere Ausführungsform der elektronischen Scharfabstimmung eines Fernsehempfängers beschrieben. Die Ausführungen sind deshalb besonders wertvoll, weil die Wirkungsweise mit den exakten Begriffen der Regelungstechnik erläutert wird.

Die Feinabstimmung des Kanalschalters ist eines der wichtigsten Bedienungselemente des Fernsehgerätes, da von ihrer genauen Einstellung die Schärfe und Qualität des Bildes und die Güte des Tones weitgehend abhängen. Optische Abstimmhilfen erleichtern die Abstimmung wesentlich, sie nutzen aber nur dann, wenn die Feinabstimmung regelmäßig kontrolliert und nachgestellt wird. Außerdem ist eine Fernbedienung aller Einstellvorgänge nach diesem Prinzip nicht möglich.

Eine weitere Unbequemlichkeit trifft die Fernsehteilnehmer, die mehrere Sender empfangen können; sie müssen beim Umschalten auf einen anderen Kanal die Feinabstimmung - sei es mit oder ohne Abstimmanzeige ieweils neu einstellen.

Um nun eine grundsätzliche und zukunftssichere Lösung für diese Schwierigkeiten und Wünsche zu finden, wurde auch bei der Firma Wega ein Fernsehgerät mit motorischem Antrieb der Kanalschaltertrommel und elektronischer Scharfabstimmung entwickelt. Bequeme Einstellung des gewünschten Kanals durch Tastendruck und eine stets optimale Bildqualität ohne eine manuell zu bedienende Feinabstimmung sind die Vorteile der nachstehend beschriebenen Schaltung, die kaum aufwendiger ist als die eines Gerätes mit optischer Abstimmhilfe.

Arbeitsweise der automatischen Scharfabstimmuno

Bei der automatischen Scharfabstimmung handelt es sich um einen Regelungsvorgang, zu dessen Erläuterung man sich mit Vorteil der Begriffe und Bezeichnungen der Regelungstechnik bedient.



Bild 2. Prinzipschaltbild des Diskriminators, der die Frequenzahweichung des Bild-Zf-Trägers in eine Steuerspannung umformt

Die Scharfabstimmung soll die Zwischenfrequenz des Bildträgers konstant auf dem Nyquistpunkt der Durchlaßkurve (38.9 kHz) halten.

Die Anlage besteht aus zwei Baugruppen:

1. aus einem Fühlorgan, das die Frequenzabweichung vom Sollwert erfaßt und ein entsprechendes Korrektursignal (= Stellgröße)

2. aus einer Regeleinrichtung am Kanalschalter, die - durch die Stellgröße angesteuert - eine Frequenzkorrektur des Oszillators im gewünschten Sinne vollzieht.

Den grundsätzlichen Aufbau der Nachstimmeinrichtung zeigt die Blockschaltung

Der Diskriminator

Zur Messung von Frequenzabweichungen der Bildträger-Zwischenfrequenz wird ein Foster-Seeley-Diskriminator nach Bild 2 verwendet. Gitter- und Anodenkreis sind auf 38,9 MHz (Bildträger-Zf) abgestimmt; der Diskriminatorkreis ergibt bei der gleichen Frequenz an seinem Arbeitswiderstand den Nulldurchgang, Bei Abweichungen der Bild-Zf vom Sollwert entsteht eine Gleichspannung. deren Polarität in bekannter Weise von der Richtung der Frequenzabweichung abhängt.

Bei der Dimensionierung des Diskriminators sind einige wichtige Voraussetzungen zu beachten:

Der Fangbereich der Frequenznachregelung muß mindestens ± 1 MHz betragen, wenn man mit ihr den gleichen Regelbereich wie mit der handbetätigten Feinabstimmung überstreichen will. Diese Bedingung legt den

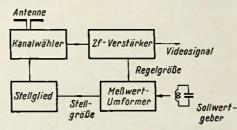
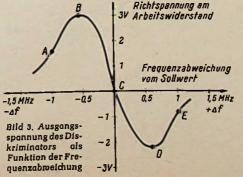
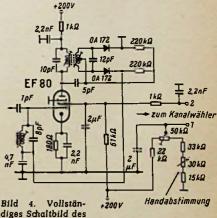



Bild 1. Prinzip der automatischen Scharfabstimmung, dargestellt als geschlossener Regelkreis

Abstand der Maxima und damit die Kopplung und Dämpfung des Diskriminatorfilters fest. Es ist jedoch nicht erforderlich, daß der Abstand der Maxima mit dem erwünschten Fangbereich von ± 1 MHz übereinstimmt; es genügt, wenn bei der maximalen noch ausregelbaren Verstimmung die abgegebene Richtspannung den Nachstimmvorgang einleitet. Ein Maxima-Abstand von ± 0,6 MHz ist als ausreichend anzusehen und durch etwas überkritische Kopplung im Diskriminatorfilter bequem zu erreichen.

Diese Bemessung des Filters ergibt eine recht interessante Arbeitsweise (Bild 3): De in den Bereichen A-B und D-E die Regelspannung der Frequenzabweichung umgekehrt proportional ist, kann sich innerhalb dieser Bereiche kein stabiler Arbeitspunkt einstellen, sondern die Regelung zieht die Frequenz in einer Art Rückkopplung sehr schnell bis zu dem Punkt B bzw. D. Von dort ab bis zum Nulldurchgang C arbeitet die Nachstimmung statisch stabil als Proportio-

nalregler, bis die bleibende Proportionalabweichung die Störgröße (= durch äußere Einflüsse verursachte Frequenzänderung des Oszillators) kompensiert und einen Gleichge-wichtszustand herbeiführt. In der Praxis werden im Band I (Kanal 2 bis 4) mit einer Proportionalabweichung von rund 100 kHz Frequenzänderungen von 700 kHz ausgeregelt, d. h. Frequenzänderungen des Oszillators werden nur mit 15 % wirksam.


Im Band III (Kanal 5 bis 11) sind die Verhältnisse noch günstiger: Es werden Oszillatoränderungen von -1,5 MHz und + 1 MHz mit einer bleibenden Regelabweichung von ≤ 100 kHz aufgefangen; im Band III wird also die Frequenzkonstanz des Oszillators um mehr als eine Größenordnung verbessert.

Mit der automatischen Scharfabstimmung können auch extreme Alterungen von Bauelementen oder sonstige Änderungen der Frequenz ausgeglichen werden, ohne daß ein Nachtrimmen der betreffenden Oszillatorspule notwendig wird.

Die vom Diskriminator abgegebene Steuerspannung allein genügt noch nicht um die geforderte Regelsteilheit zu erreichen: Es wird daher das gleiche Röhrensystem nochmals zur Gleichspannungsverstärkung herangezogen (Bild 4). Die aus Katode, Steuer- und Schirmgitter gebildete Triode verstärkt etwa 10fach. Durch Gegenkopplung über den Katodenwiderstand wird eine ausreichende Nullpunktstabilität erzielt. Auch liegt es in der Natur der angewendeten Rückwärtsregelung, daß alle etwaigen Anderungen der Röhrendaten oder der Einzelteile - soweit sie die Oszillatorfrequenz beeinflussen können - in gleicher Weise ausgeregelt werden wie die Verstimmungen im Kanalschalter.

Der Frequenzregler am Kanalschalter

Der in Verbindung mit der Scharfabstimmung benutzte Kanalschalter besitzt keine handbediente Feinabstimmung mehr: Der veränderliche Kondensator ist durch eine aus einer Golddrahtdiode, zwei Widerständen

Diskriminators mit nachfolgender Gleichspannungsverstärkung in Reflexschaltung

und drei Kondensatoren bestehenden Baugruppe ersetzt worden (Bild 5).

Die Arbeitsweise des Regelgliedes ist da folgende:

Beim Sollwert der Oszillatorfrequenz ist an den Klemmen 1 und 2 keine Regelspannung vorhanden. Tritt nun eine Verstimmung nach tieferen Frequenzen ein, so erhält die Diode eine Vorspannung in der Sperrichtung. Dadurch wird ihre im Schwingkreis wirksame Kapazität verringert und die Frequenzabweichung korrigiert. Frequenzänderungen sind bis zu einer Sperrspannung von etwa 15 V zu erzielen, und sie betragen im Maximum rund 0,8 % der Oszillatorfrequenz.

Wandert der Oszillator nach höheren Frequenzen zu, so erhält die Diode eine der Abweichung proportionale Steuerspannung in der Durchlaßrichtung; sie wird leitend und läßt den vorgeschalteten Kondensator von 4 pF mehr oder weniger wirksam werden. Die hierdurch erreichbare Frequenzkorrektur umfaßt einen Bereich von mehreren Megahertz, der allerdings in der Praxis nicht ausgenutzt wird.

Bild 6 zeigt die Frequenzänderung in Abhängigkeit von der Regelspannung in den Kanälen 9 und 2. Da durch gleiche Regelspannung auch etwa gleiche prozentuale Abweichungen ausgeglichen werden, ist die absolute Frequenzkorrektur im Kanal 9 größer als im Kanal 2.

Wichtig ist noch die Genauigkeit der Scharfabstimmung. Maßgeblich für den Arbeitspunkt auf der Nyquistslanke ist allein der Diskriminatorkreis, auf dessen Nulldurchgang hin die Regelung den Oszillator

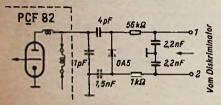


Bild 5. Schaltung des die Oszillatorfrequenz beeinflussenden Regelgliedes

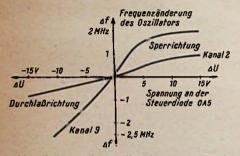


Bild 6. Anderung der Oszillatorfrequenz als Funktion der am Regelglied anliegenden Steuerspannung

nachzieht. Von der Stabilität dieses Kreises hängt also die Genauigkeit des Abstimmvorganges entscheidend ab. Diese Stabilität ist aber recht gut, da die Arbeitsbedingungen für ihn denkbar günstig sind: Er wird durch keine Röhre mit ihren schwankenden Betriebswerten beeinflußt; durch Wahl von Kreiskapazitäten mit entsprechenden Temperaturkoeffizienten ist eine ausreichende Temperaturkonstanz leicht zu erreichen und eine künstliche Alterung sichert die Abstimmungsgenauigkeit auch für lange Zeiträume. Als Anhaltspunkt sei angegeben. daß die gemessenen Frequenzwanderungen maximal nur 50...75 kHz betragen. Diese Abweichung ist aber weder im Bild noch im Ton wahrzunehmen.

Noch ein weiterer Gesichtspunkt mußte bei der Entwicklung der Scharfabstimmung berücksichtigt werden: Beim Abgleich des Diskriminators wird die Bildträger-Zwischenfrequenz genau auf 38,9 MHz eingestellt. Dadurch ist gleichzeitig auch die Gewähr gegeben, daß störende Zwischenfrequenzen der Nachbarkanäle exakt mit denen der entsprechenden Saugkreise übereinstimmen.

Es kann aber gelegentlich der Fall auftreten, daß der zu empfangende Sender oder der des Nachbarkanals im Offset-Betrieb') arbeiten und ihre Frequenzen um einen bestimmten Betrag neben der eigentlich laut Wellenplan zugeteilten Frequenzen liegen. Da die Fallen zur Nachbarkanalunterdrückung im Interesse einer geringen Laufzeitverzerrung im Zf-Verstärker schmalbandig sind, kann es von Vorteil sein, wenn

sich der Arbeitspunkt auf der Nyquistslanke soweit verschieben läßt, daß der Nachbarkanal-Sender exakt auf den Punkt der maximalen Unterdrückung fällt. Deshalb wurde in der Schaltung eine zusätzliche, von außen zugängliche Korrekturspule vorgesehen, mit deren Hilfe der Arbeitspunkt der Scharfabstimmung um ± 200 kHz variiert werden kann.

Für den Fall, daß sich durch Transportschäden oder sonstige Ursachen eine oder mehrere Oszillatorspulen um mehr als 1 MHz verstimmen sollten, besteht die Möglichkeit, die Oszillatorfrequenz von Hand wieder auf den richtigen Wert zu bringen. Der dazu vorgesehene Regler bewirkt eine Verschiebung des Diodenarbeitspunktes und damit eine Frequenzänderung. Betätigt man ihn, so schaltet sich beim Berühren des Drehknopfes die Scharfabstimmung ab; man stellt dann ein annähernd befriedigendes Bild ein und läßt den Drehknopf los. Die exakte Feinabstimmung besorgt die jetzt wieder wirksame automatische Scharfabstimmung. Die Empfindlichkeit des Diskriminators ist so bemessen, daß er eine ausreichende Regelspannung zur Verfügung stellt. sobald sich der Bildträger merklich aus dem Rauschspektrum heraushebt, also noch ehe ein empfangswürdiges Bild vorhanden ist.

Einfacher FM-Prüfsender mit ECC 81

Im Laufe der Verkaufspraxis hatte sich in einem größeren Einzelhandelsgeschäft ergeben, daß oft Kunden vollkommen unmotiviert auf irgendein Modell zurückgriffen. Nach längerer Beobachtung stellte sich heraus, daß dieser Kaufwunsch fast ausschließlich darauf zurückzuführen war, daß der Kunde zufällig mit diesem Gerät "seine Musik" hörte und ihm deshalb der Erwerb des Empfängers begehrenswert erschien. Wer kennt nicht den Zustand, wenn bei einer Vorführung gerade nur Wasserstandsmeldungen oder der Landfunk zu hören sind?

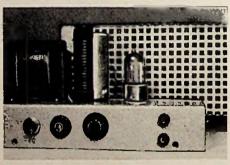
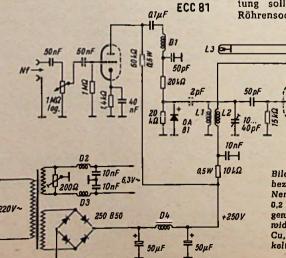



Bild 1. Modell eines einfachen FM-Prüfsenders

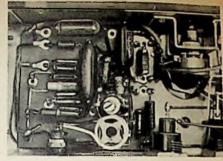


Bild 3. Blick in die Verdrahtung des Modells

Die Probe aufs Exempel sollte diese Theorie bald bestätigen. Es wurde der nachstehend beschriebene kleine Sender gebaut, der, mit angenehmer Unterhaltungsmusik moduliert, bald den Verkaufserfolg steigern half.

Der Aufbau dieses Senders ist nicht besonders kritisch. Es ist nur darauf zu achten, daß das Gerät gut abgeschirmt und gegen das Netz verdrosselt wird. Auch darf das Gerät keinesfalls an einer Antenne betrieben werden, da dies als Schwarzsenden gilt und mit Gefängnis bestraft werden kann.

Das Mustergerät wurde, wie Bild 1 zeigt, unter Verwendung eines kleinen Leistner-Gehäuses aufgebaut, das gerade zur Verfügung stand. Die Schaltung Bild 2 weist keine Besonderheiten auf und wurde bereits vor einigen Jahren als "Jedermann-FM" bezeichnet. Ein Triodensystem einer Röhre ECC 81 arbeitet als frequenzmodulierter Oszillator, während das zweite System zur Nf-Verstärkung und Vorverzerrung herangezogen wird. Der Oszillator schwingt in induktiver Rückkopplungsschaltung. Parallel zum Schwingkreis liegt als Frequenzmodulator eine Diode in Reihe mit einer Kapazität. Der Innenwiderstand der Diode wird im Takt der Nf-Spannung, die am Außenwiderstand der Nf-Röhre abfällt, verändert und legt dadurch die Kapazität mehr oder weniger dem Schwingkreis parallel.

Die übliche Vorverzerrung von 50 µsec wird durch ein entsprechendes RC-Glied in der Katodenleitung der Nf-Vorröhre erreicht. Benutzt man zur Aussteuerung des Vorverzerres einen Hi-Fi-Plattenspieler oder ein gutes Tonbandgerät, so ist gehörmäßig kein Unterschied zwischen einer Originalsendung und diesem primitiven Gerät festzustellen.

Mechanisch ist zu beachten, daß der Schwingkreis möglichst aus dickem Draht auf einen keramischen Körper gewickelt wird, da auf diese Art eine gewisse Frequenzstabilität und Sicherheit gegen Mikrofonie-Erscheinungen gegeben ist.

Die Oszillatorröhre ist nicht in unmittelbarer Nähe des Netztransformators zu montieren, um Brummodulation mit Sicherheit zu verhindern. Die Erdung der Schaltung sollte außer an dem Röhrchen des Röhrensockels nur noch an einem Punkt

der Chassis vorgenommen werden, da sich durch unsachgemäße Erdung Brummschleifen bilden können.

Bild 3 zeigt den Aufbau des Labormusters. Es arbeitet schon seit drei Jahren in dieser Form zuverlässig und einwandfrei. R. Spies

Bild 2. Schaltung des Senders. — Alle nicht bezeichneten Widerstände sind für 0,25 W Nennlast. D 1...D 3 = Drossel aus Drok 0,2 mm CuL auf 0,25-W-Widerstandsstab gewickelt. D 4 = Netzsiebdrossel oder Siebwiderstand 3 kg/l1 W. L 1 = 4 Wdg 1 mm Cu, L 2 = 2 Wdg 0,3 CuSS auf L 1 gewikkelt, L 3 = 1 Wdg 1 mm Cu, in 10 mm Abstand von L 1/L 2 angeordnet

¹⁾ Vgl. FUNKSCHAU 1958, Heft 2, Selte 50

Die Anpassung in Empfangsantennenanlagen

Von Dr.-Ing. A. Fiebranz

Das Wort "Anpassung" ist wohl jedem bekannt, der sich mit Antennenanlagen befaßt. Es ist auch allgemein bekannt, daß bei richtiger Anpassung die Kennwiderstände der Antenne, der Leitung und des Empfängereinganges übereinstimmen.

Dieser Idealzustand ist aber wegen der entstehenden Kosten bei Empfangsantennenanlagen nicht zu erreichen. Deshalb ist es für jeden Antennenbauer wichtig zu wissen, welche Empfangsnachteile durch Fehlanpassung entstehen und wie gut die Anpassung sein muß, damit der Empfang nicht wesentlich beeinträchtigt wird.

Sinn und Zweck der Anpassung

Die großen Leistungen der Starkstromtechnik müssen mit hohem Wirkungsgrad und geringen Verlusten erzeugt und weitergeleitet werden. In der Schwachstromtechnik kommt es dagegen darauf an, kleine Leistungen mit geringstem Materialaufwand zu erzeugen und dem Verbraucher zuzuführen. Das Ziel der günstigsten Leistungsübertragung wird erreicht, wenn der Innenwiderstand R_i des Generators und der Eingangswiderstand R_e des Verbrauchers gleich sind. Sind die beiden Widerstände verschieden. so werden sie durch einen Übertrager mit dem erforderlichen Übersetzungsverhältnis aneinander angepaßt. Ein bekanntes Beispiel der Tonfrequenztechnik ist die Anpassung des niederohmigen elektrodynamischen Lautsprechers an die hochohmige Ausgangsstufe eines Verstärkers mit Hilfe des Ausgangsübertragers. Die Anpassungsvorschrift der Niederfrequenztechnik lautet:

$$R_i = R_e$$

Für Ultrakurzwellen, alo auch für die Behandlung von Empfangsantennenanlagen für UKW-Rundfunk und Fernsehen, genügt diese einfache Formel im allgemeinen aus zwei Gründen nicht.

1. In der Niederfrequenztechnik kann man die kapazitiven oder induktiven Blindanteile der anzupassenden Widerstände im allgemeinen vernachlässigen. Der Fußpunktwiderstand der Empfangsantennen und der Eingangswiderstand der Empfänger sind dagegen meist mit erheblichen Blindkomponenten behaftet, die nur bei groben Abschätzungen ganz außer Acht gelassen werden dürfen.

2. In der Niederfrequenztechnik betragen die Wellenlängen ein Vielfaches der Länge der verwendeten Verbindungsleitungen. Beim UKW-Rundfunk- und Fernsehempfang auf Wellenlängen zwischen 7 m und 1 m umfassen dagegen die Verbindungsleitungen zwischen der Antenne und dem Empfänger fast immer mehrere Wellenlängen. Aus diesem Grund muß die Leitungsart zur Antenne und zum Empfängereingang passend gewählt werden. Die maßgebende Kenngröße der Leitung ist der "Wellenwiderstand". Bei richtiger Anpassung sind der Fußpunktwiderstand R; der Antenne, der Wellenwiderstand Z der Leitung und der Eingangswiderstand Re des Empfängers gleich

$$R_i = Z = R_e$$

Der Wellenwiderstand Z ist eine reine Rechengröße, die nur durch den Aufbau und die Abmessungen der Leitung bestimmt ist und nichts mit der Leitungsdämpfung, dem ohmschen Widerstand der Leitungsadern und den Verlusten im Isoliermaterial der Leitung zu tun hat.

Die grafische Darstellung von Scheinwiderständen als Leitungsabschluß (Leitungsdiagramm)

ohmisch

stand R aus Wirk-

und Blindanteil

Ein Scheinwiderstand setzt sich zusammen aus einem Wirkwiderstand (ohmscher Anteil) und einem Blindwiderstand (induktiver oder kapazitiver Anteil). Weil der Wechselstrom, der durch eine Kapazi-

1,5 ohmisch

1,5 ohmisch

1,5 2

Attraces

1,5 2

Bild 2. Zahlenebene mit m- und l-Kreisen

tät oder durch eine Induktivität fließt, gegenüber dem Strom in einem ohmschen Widerstand eine Phasenverschiebung von — 90° bzw. + 90° hat, ist die zahlenmäßige Auswertung allgemeiner Gleichungen mit Scheinwiderständen schwierig und umständlich. Viel leichter und übersichtlicher kommt man mit einer grafischen Darstellung zu den gewünschten Ergebnissen.

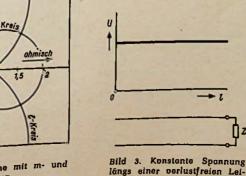
In einem rechtwinkligen Koordinatennetz trägt man die ohmschen

In einem rechtwinkligen Koordinatennetz trägt man die ohmschen Widerstände auf der horizontalen Mittelachse von links nach rechts in linearem Maßstab auf. Die Blindwiderstände trägt man vom Nullpunkt der horizontalen Achse ausgehend in gleichem Maßstab auf, und zwar die induktiven nach oben und die kapazitiven nach unten.

Jedem Punkt der ganzen Ebene ist ein Scheinwiderstand 🤾 zugeordnet, dessen Wirk- und Blindanteil R_w und R_h man am Fußpunkt der auf die beiden Achsen gefällten Lote ablesen kann (Bild 1).

Um die Rechenebene möglichst vielseitig verwendbar zu machen, werden nicht die wirklichen Widerstandswerte auf den Achsen aufgetragen, sondern normierte Werte. Sie ergeben sich dadurch, daß man den Sollwert der richtig angepaßten Widerstände gleich 1 setzt. Beträgt dieser Wert bei einer Antennenanlage z. B. 240 Ω , so braucht man nur alle ermittelten Wirk- und Blindanteile mit 240 Ω zu multiplizieren, um die wirklichen Widerstandswerte zu erhalten.

In diese normierte Zahlenebene werden nun noch zwei Kreisscharen eingetragen, von denen die eine m-Schar und die andere l-Schar genannt wird (Bild 2). Um die Kreise der m-Schar zu zeichnen, halbiert man jeweils die Strecke zwischen zwei Punkten m und


 $\frac{1}{m}$ (z. B. 2 und ½) auf der horizontalen Achse und zeichnet um diesen Mittelpunkt einen Kreis, der durch die beiden Endpunkte m und $\frac{1}{m}$ der Strecke geht. Diesen Kreis bezeichnet man mit der Ziffer

m oder
$$\frac{1}{m}$$
, also z. B. mit 2 oder 0,5.

Die Kreise der l-Schar stehen senkrecht auf den Kreisen der m-Schar (genauer gesagt stehen in jedem Schnittpunkt zweier Kreise die Tangenten aufeinander senkrecht). Die Mittelpunkte liegen auf der vertikalen Achse der Ebene. Die Kreise der I-Schar gehen alle durch den Punkt 1 der horizontalen Achse. Mittelpunkt und Durchmesser der l-Schar sind ebenfalls einfach zu finden. Wir übergehen die zugehörigen Berechnungsformeln, weil wir hier nicht die Kreisscharen berechnen, sondern nur die Zusammenhänge erklären wollen. Die Kreisbögen der I-Schar sind vom Nullpunkt ausgehend und um den Punkt 1 der horizontalen Achse herum mit Ziffern zwischen 0 und 0,5 bezeichnet. Die horizontale Achse hat zwischen 0 und 1 die Ziffern 0 und 0,5 und zwischen 1 und ∞ die Ziffer 0.25. Jedem Scheinwiderstand der Ebene ist also auch ein m-Wert und ein l-Wert zugeordnet. Diese Werte m und I haben einen physikalischen Sinn, wenn der betreffende Scheinwiderstand als Abschluß am Ende einer Leitung liegt.

Die Spannungsverteilung längs der Leitung

Wenn eine Leitung am Ende mit ihrem Wellenwiderstand Z abgeschlossen ist, so fließt die Energie der ultrakurzen Welle, die sich längs der Leitung fortpflanzt, restlos in den Abschlußwiderstand hinein und wird darin aufgezehrt. Die Spannung längs der verlustfrei angenommenen Leitung ist konstant (Bild 3). Wenn dagegen die Leitung am Ende z. B. offen ist, so wird die Wellenenergie am Leitungsende vollständig reflektiert. Die reflektierte Welle überlagert sich mit der ankommenden Welle. Dadurch entstehen auf der Leitung die sogenannten Stehwellen.

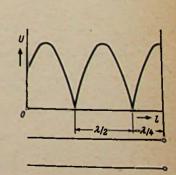


Bild 4. Spannungsverhältnisse an einer offenen Leitung

FUNKSCHAU 1958 / Heft 22 1049

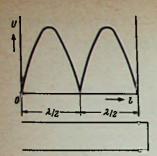


Bild 5. Spannungsverhältnisso an einer kurzgeschlossenen Leitung

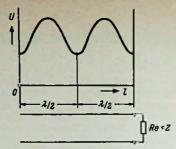


Bild 6. Spannungsverhältnisse an einer durch einen ohmschen Widerstand abgeschlossenen Leitung

Am offenen Ende einer verlustfreien Leitung (Bild 4) hat die Spannung ihren Höchstwert, auf einer Strecke von der Länge einer Viertelwelle ($\lambda/4$) geht sie auf Null zurück, um dann wieder in $\lambda/4$ -Abständen auf den gleichen Höchstwert anzusteigen und auf Null abzufallen. In Abständen von einer halben Wellenlänge können also auf der Leitung mit einer Abtastsonde Nullstellen und Höchstwerte der Spannung gemessen werden (Bild 4). Wenn man die Leitung kurzschließt, verschieben sich die Nullstellen und die Maximalwerte lediglich um $\lambda/4$, weil die Spannung am kurzgeschlossenen Leitungsende Null sein muß (Bild 5).

Ist die Leitung mit einem reinen Blindwiderstand (Kapazität oder Induktivität) abgeschlossen, so bleibt die Spannungsverteilung die gleiche wie bei Leerlauf und Kurzschluß, die Kurve verschiebt sich nur soweit längs der Leitung, daß die Spannung am Ende gleich dem Spannungsabfall an der angeschlossenen Induktivität oder Kapazität ist.

Bei Abschluß mit einem ohmschen Widerstand, der vom Wellenwiderstand abweicht, treten wieder in $\lambda/2$ -Abstand Spannungsminima und -maxima, aber keine Nullstellen mehr auf. Das erste Spannungsminimum liegt am Leitungsende, wenn R_e kleiner ist als Z, das erste Spannungsmaximum, wenn R_e größer ist als Z (Bild 6).

Das Verhältnis des Spannungsmaximums zum Spannungsminimum bezeichnet man als Stehwellenverhältnis m. Seine Werte liefern direkt die m-Schar im Widerstandsdiagramm. Es ist bei einem rein ohmschen Abschlußwiderstand gleich dem Verhältnis dieses Widerstandes zum Wellenwiderstand der Leitung oder dessem reziproken Wert, je nachdem, welcher Widerstand größer ist. Nach dieser Definition ist das Stehwellenverhältnis größer als 1. Man kann jedoch auch von seinem reziproken Wert, der meist Welligkeit genannt wird, ausgehen, ohne daß sich an den Ergebnissen der Berechnungen etwas ändert. Teilt man den Abstand des ersten Minimums von Leitungsende durch die Wellenlänge \(\lambda\) der Meßfrequenz, so ergibt sich der Zahlenwert an den einzelnen Kreisen der l-Schar.

Den zu messenden Scheinwiderstand schließt man an das Ende einer Meßleitung an und bestimmt durch Abtasten der Leitung die Spannungsmaxima und die Spannungsminima sowie deren Abstand vom Leitungsende. Daraus ergeben sich die m- und l-Werte, der zugehörige Punkt im Widerstandsdiagramm und der Wirk- und Blindanteil des Abschlußwiderstandes.

Um den Einfluß der Fehlanpassung in einer Antennenanlage zu ermitteln, braucht man aber nicht den Eingangswiderstand des Empfängers und den Fußpunktwiderstand der Antenne in Wirk- und Blindanteile zu zerlegen. Er läßt sich viel übersichtlicher und einfacher mit Hilfe des Stehwellenverhätnisses mangeben.

Der Anpassungsgrad in Antennenanlagen

Bei richtiger Anpassung an das Zuleitungskabel und den Empfänger kann die Antenne die maximale Wirkleistung N_{max} abgeben. Bei Fehlanpassung der Antenne, aber richtiger Anpassung zwischen Empfänger und Kabel gibt die Antenne nur die Wirkleistung N ab. Dann ist der Leistungsanpassungsgrad:

$$\frac{N}{N_{\text{max}}} = \frac{4}{2 + m + \frac{1}{m}}$$
 (1)

Von der fehlangepaßten Antenne wird die Spannung U abgegeben. Wenn die Antenne etwa durch ein geeignetes Transformationsglied an das Kabel und den Empfänger, also an den gleichen Verbraucherwiderstand, richtig angepaßt wird, so gibt sie die größtmögliche Spannung Umax ab.

Das Verhältnis dieser beiden Spannungen ist der Spannungsanpassungsgrad:

$$\frac{U}{U_{\text{max}}} = \frac{2}{\sqrt{2+m+\frac{1}{m}}}$$
 (2)

Bild 7 zeigt die beiden Kurven N

und $\frac{U}{U_{max}}$ in Abhängigkeit von m. In dem gewählten doppelt loga-

rithmischen Koordinatensystem sind die beiden Kurven symmetrisch zur Linie m = 1 (Anpassung). Die Kurvenäste nähern sich für große und kleine m jeweils einer Geraden. Die im Diagramm angegebenen Gleichungen dieser Geraden erhält man aus den Formeln für den Leistungs- und Spannungsanpassungsgrad, wenn man im Nenner für

m>1 die 2 und $\frac{1}{m}$, für m<1 die 2 und m vernachlässigt. Wie man aus dem Diagramm erkennt, kann man für Berechnungen von Empfangsantennen bei m>10 bzw. $\frac{1}{m}<10$ die einfachen Glei-

chungen der Geraden benutzen. Der Anpassungsgrad gibt in jedem Fall die übertragene Wirkleistung an, die für die Güte des Empfanges allein maßgebend ist, und die angegebenen Formeln für den Anpassungsgrad gelten auch dann, wenn der nicht angepaßte charakteristische Widerstand der Antenne oder des Empfängers einen induktiven oder kapazitiven Blindanteil enthält.

Bildstörungen durch reflektierte Wellen in einer Empfangsanlage

Wenn der Eingangswiderstand des Empfängers und der Fußpunktwiderstand der Antenne vom Wellenwiderstand des Kabels abweichen, können die Leistung und die Spannung, die im Empfänger wirksam werden, nicht mehr allgemein in einer einfachen Formel angegeben werden. Sie sind dann nämlich von dem Verhältnis der Leitungslänge zur aufgenommenen Wellenlänge abhängig. In diesem Fall ist es möglich, durch Wahl einer passenden Leitungslänge ein Optimum des Empfanges zu erhalten, das in einzelnen besonders günstig gelagerten Fällen sogar den Anpassungsgrad 1 - entsprechend der richtigen Anpassung - erreichen kann. Die kleinstmöglichen Werte der Empfangsleistung und der Empfangsspannung kann man ebenfalls leicht ermitteln. Man braucht dazu nur die zum Eingangsund zum Abschlußwiderstand gehörenden Stehwellenverhältnisse miteinander zu multiplizieren und das Produkt für m in die Formeln (1) und (2) einzusetzen. Dieser Wert ergibt sich z. B., wenn der Eingangs- und Abschlußwiderstand rein ohmisch und entweder beide größer oder beide kleiner sind als der Wellenwiderstand des Kabels, und wenn die Kabellänge ein ungerades Vielfaches von einem Viertel der Betriebswellenlänge ist. Der Anpassungsgrad bei beliebiger Kabellänge und Empfangsfrequenz liegt irgendwo zwischen den beiden Extremwerten. Um zu zeigen, welche Fehlanpassungen noch keine erheblichen Einbußen an Empfangsspannung zur Folge haben, genügt es, den ungünstigsten Fall zu berechnen.

Wenn z. B. die Antenne und der Empfänger beide einen charakteristischen Widerstand entsprechend m = 2 haben, so beträgt die Empfangsspannung noch 80 % und die Empfangsleistung noch 64 % der Werte bei richtiger Anpassung. Eine Abnahme der Empfangsspannung um 20 % ist aber an einem Rundfunkempfänger oder einem Fernseher noch kaum wahrnehmbar. Überdies tritt dieser ungünstige Wert ja nur selten auf.

Beim Fernsehen kann die Fehlanpassung noch eine zweite Störung verursachen, wenn die Antenne und der Empfänger fehlangepaßt sind. Weil ein vom Wellenwiderstand der Leitung abweichender Belastungswiderstand nur einen Teil der Energie aufnimmt, wird der Rest reflektiert und fließt als reflektierte Welle wieder auf der Leitung zurück. Wenn nun auch der Fußpunktwiderstand der Antenne nicht mit dem Wellenwiderstand des Kabels übereinstimmt, so wird am Kabelanfang wieder ein Teil der zurückfließenden Energie reflektiert und kommt schließlich nach einer der doppelten Leitungslänge entsprechenden Laufzeit wieder am Empfängereingang an.

Eine zweite verzögert eintreffende Welle erzeugt aber bekanntlich ein zweites gegen das Hauptbild seitlich versetztes Bild, das man "Geist" nennt. Die Verzögerung der reflektierten Welle auf der Antennenableitung ist im allgemeinen so klein, daß das zweite Bild noch ziemlich dicht neben dem Hauptbild sitzt. Es tritt deshalb nicht als getrenntes Bild in Erscheinung, sondern macht nur die Konturen des Fernsehbildes unscharf. Man spricht dann von "Plastik".

Man kann leicht abschätzen, bei welchen Fehlanpassungen diese Erscheinung anfängt, den Bildeindruck zu stören. Das Verhältnis der Beträge der am falsch abgeschlossenen Leitungsende reflektierten zur ankommenden Spannung ist der Reflexionsfaktor r. Er kann aus dem Stehwellenverhältnis m berechnet werden:

$$r = \frac{m-1}{m+1}$$

Kennzeichnet man die Größen für den Leitungsanfang durch den Index a und die für das Leitungsende durch den Index e, so ist der Betrag der nach Reflexion am Ende und am Anfang wieder am Ende der Leitung ankommenden Spannung um den Faktor $\mathbf{r}_0 \cdot \mathbf{r}_a$ kleiner als die direkt ankommende Spannung. Bei einer Fehlanpassung am Anfang und am Ende der Leitung entsprechend einem Stehwellenverhältnis $\mathbf{m}_a = \mathbf{m}_6 = 2$ ergibt sich $\mathbf{r}_a = \mathbf{r}_e = 0.33$ und $\mathbf{r}_a \cdot \mathbf{r}_e = 0.1$. Die zweifach reflektierte Spannung hat also noch etwa 10 % des Betrages der auf dem direkten Weg ankommenden Spannung. Wegen

der Kabeldämpfung ist die Spannung des Zweitbildes noch kleiner.

Bei einer Antennenableitung von 30 m Länge aus normalem 240-Ω-Bandkabel ist sie z. B. nach der durchlaufenen Strecke von 60 m fast auf die Hälfte ihres Ausgangswertes abgesunken. In abgeschirmten Kabeln mit größerer Dämpfung ist die Abnahme noch größer. Die Zweitbildspannung wird also im ungünstigsten Fall 5 % der Hauptbildspannung nur wenig überschreiten.

Der seitliche Abstand des Zweitbildes vom Hauptbild ist leicht zu berechnen. Die Laufzeit der Welle des Zweitbildes auf dem Kabel ist gleich dem Quotienten aus der doppelten Kabellänge und der Fortpflanzungsgeschwindigkeit v der Welle im Kabel. Die Wellengeschwindigkeit ist in Kabeln kleiner als in Luft, im normalen 240-Ω-Bandkabel z. B. um den Faktor 0,8. Damit ist

$$v = 3 \cdot 10^{10} \cdot 0.8 = 2.4 \cdot 10^{10} \text{ cm/s}.$$

Bei einer Kabellänge von 30 m ergibt sich also eine Laufzeit von 0,25 μs. Bei dem in Deutschland benutzten 625-Zeilen-Fernsehbild wird eine Zeile in 52 μs geschrieben. Bei einer Bildbreite von 330 mm entsprechen also 0,25 μs einer Versetzung des Zweitbildes um ungefähr 1,5 mm.

Ein solches Zweitbild mit 5 % der Spannung des Hauptbildes und etwa 1,5 mm Abstand davon ist auch in einem Testbild kaum zu erkennen und wirkt noch nicht störend. Überhaupt wird "Plastik" als Folge von Fehlanpassungen in der Antennenanlage in der Praxis kaum beobachtet. Wenn sie auftritt, ist sie meist auf Fehler im Empfangsgerät (Überschwingen) oder auf reflekierte Wellen zurückzusühren, die von Häusern oder Gegenständen in der näheren Umgebung der Empfangsantenne zurückgeworfen werden.

Große Fehlanpassungen an der Antenne und am Empfänger können schließlich noch die Bildschärfe beeinträchtigen. Die Restspannung, die wieder am Empfängereingang ankommt, nachdem sie am Empfängereingang und an der Antenne reflektiert wurde, hat über einen Fernsehkanal betrachtet eine veränderliche Phasenlage zu der direkt ankommenden Spannung. Bei der bereits behandelten Antennenanlage mit 30 m Kabel dreht sich z. B. im Kanal 8 am unteren Bandrand (195 MHz) auf dem Umweg von 60 m die Phase der reflektierten Welle 55,5mal um 360°, weil der Laufweg von 60 m 55,5mal so groß ist wie die Wellenlänge auf dem Kabel.

$$\lambda_k = 0.8 \cdot \frac{300}{195} = 1.08 \text{ m}.$$

Am oberen Bandende (202 MHz) dreht sich die Phase auf 60 m dagegen 57,8mal um 360°. Über die Kanalbreite von 7 MHz dreht sich die Phase also 2,3mal um 360°. Das bedeutet, daß die direkt ankommende und die reflektierte Spannung im Kanal zweimal zu addieren und zweimal zu subtrahieren sind. Die Übertragung über die Bandbreite ist deshalb nicht gleichmäßig, sondern im Takte einer Sinusfunktion periodisch schwankend. Wenn die Amplitude der reflektierten Welle nur 5 % der direkten beträgt, spielt diese Übertragungsschwankung zwar ebenfalls noch keine Rolle, aber bei großen Fehlanpassungen kann sie das Bild unscharf machen.

Die zulässige Größe der Fehlanpassung

Die Abschätzung zeigt, daß Fehlanpassungen von 1:2 das Fernsehbild noch nicht merklich verschlechtern. Wenn man eine Antenne, deren Fußpunktwiderstand halb oder doppelt so groß ist wie der Wellenwiderstand des Kabels, durch Änderungen an der Antenne oder mit einem verlustfreien Übertrager ideal anpassen würde, so ergäbe sich lediglich ein Spannungszuwachs von 6 %. Diese geringe Verbesserung läßt den erforderlichen verhältnismäßig großen Aufwand an Anpassungsmitteln nicht lohnend erscheinen.

Da der angegebene Fußpunktwiderstand der Antennen und auch der Eingangswiderstand der Empfänger in der Praxis im allgemeinen zwischen dem halben und dem doppelten Nennwert schwanken, braucht man sich natürlich auch beim Wellenwiderstand des Kabels nicht ängstlich an den Sollwert zu halten. Die üblichen Antennen mit 240 Ω Fußpunktwiderstand darf man z. B. mit einem symmetrischen 120-Ω-Kabel an einen Empfänger mit 240-Ω-Eingang anschließen. Das ist wichtig, wenn eine abgeschirmte Niederführung erforderlich ist, weil dann das gebräuchliche abgeschirmte symmetrische Kabel mit 120 Ω Wellenwiderstand aus verschiedenen Gründen am günstigsten ist:

 Der Preis ist ungefähr gleich dem eines 60-Ω-Koaxialkabels mit gleicher Dämpfung, aber für das 60-Ω-Kabel braucht man zusätzlich je ein Anpaß- und Symmetrierglied an der Antenne und am Empfänger.

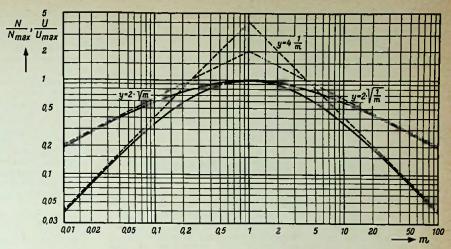


Bild 7. Spannungs- und Leistungsverhältnis (Anpassungsgrad) in Abhängigk<mark>eit zum</mark> Stekwellenverhältnis

2. Für jede Kabelart gibt es einen Wellenwiderstand, bei dem die Kabeldämpfung für gegebene Abmessungen ein Minimum wird. Dieser günstigste Wellenwiderstand liegt für konzentrisches Kabel ungefähr bei $60~\Omega$, für nicht abgeschirmtes symmetrisches Kabel (Bandund Schlauchkabel) ungefähr bei $240~\Omega$ und für symmetrische, geschirmte Kabel ungefähr bei $120~\Omega$. Deshalb haben die ebenfälls erhältlichen $240-\Omega$ -Kabel bei annähernd gleichen Außenmaßen eine größere Dämpfung als die $120-\Omega$ -Kabel. Nachteile von entscheidender Bedeutung sind außerdem der höhere Preis und der kleinere Durchmesser der Innenleiter.

Bei den üblichen 240-Ω-Kabeln sind die Adern nämlich nur 0,4 mm stark. Das 120-Ω-Kabel hat dagegen Innenleiter von 0,75 mm Φ. Es ist deshalb viel schneller zu verarbeiten und die Gefahr, daß beim Abisolieren und Anklemmen des Kabels Adern abgeschnitten oder abgerissen werden, ist viel geringer.

Um die Anpassung an Kabel mit 120 und 240 Ω Wellenwiderstand so günstig wie möglich zu machen, hat deshalb die Firma Hirschmann die Mittelwerte des Fußpunktwiderstandes ihrer Fernsehantennen bewußt nicht auf 240 sondern auf ca. 180 Ω gelegt.

Die Antennen anderer Hersteller haben aber meist ebenfalls einen Fußpunktwiderstand, der kleiner als 240 Ω ist. Bei den üblichen Yagi-Antennen hat z. B. der als Empfangsdipol gebräuchliche Faltdipol allein einen Fußpunktwiderstand von 240 Ω . Durch die Reflektoren und Direktoren wird dieser Wert aber je nach deren Abständen untereinander und vom Faltdipol mehr oder weniger verkleinert.

Telefunken-Siliziumdioden

Neben Germaniumdioden stehen nun auch serienmäßige Siliziumdioden für Spezialzwecke zur Verfügung. Telefunken führt zwei
Reihen dieser Dioden, und zwar die Reihe OA 126 zum Erzeugen
stabilisierter Bezugsspannungen unter Ausnutzung des sog. ZenerEffektes und die Reihe OA 127 bis OA 133. Dies sind Dioden mit besonders hohem Sperrwiderstand, die auch bei höheren Umgebungstemperaturen verwendet werden können.

Für die verschiedenen Ausführungen der Reihe OA 126 gelten allgemein folgende Werte bei 25°C Umgebungstemperatur:

Durchlaßstrom I_d > 1 > 10 > 100 mA bei Durchlaßspannung U_d 0,7 0,75 0,85 V

Der Sperrstrom ist bei -1 V stets kleiner als 0,01 μ A. Die Sperrschichttemperatur darf maximal 175°C betragen. Der Temperaturkoeffizient der Durchbruchspannung (Zener-Spannung) UZ ist kleiner als 0,1% je Grad Celsius.

Zener-Diodon

Durchbruchsspannung U_Z und differentieller Durchbruchswiderstand R_i bei $-2\,\mathrm{mA}$ Sperrstrom

Typ OA 128/4 OA 128/6 OA 128/8 OA 126/11 OA 128/14 OA 128/18 U_Z 3...5 5...7 7...9,5 9,5...12,5 12,5...16 16...20 V $R_i \leq$ 25 25 40 70 180 250 Ω

Die hochsperrenden Siliziumdioden OA 127 bis 133 führen bei – 110 V Sperrspannung einen Sperrstrom von weniger als 0,1 μ A.

Ingenieur-Seiten: Fachliteratur

Hochsperrende Dioden

Durchlaßstrom I dei U = 1 V und Durchbruchsspannung U bei einem Sperrstrom I sperr \approx 100 μA

Typ OA 127 OA 128 OA 129 OA 130 OA 131 OA 132 OA 133 I_d 40>10 30>5 20>2 15>1 10>0,5 10>0,5 10>0,5 mA U_Z 20...40 35...85 75...145 135...250 230...250 320...550 > 550 V

Auch bei ihnen darf die Sperrschichttemperatur bis zu 175° C betragen. Für Durchlaßstrom I_d und Durchbruchsspannung U_Z bei 25° C Raumtemperatur gelten die folgenden Werte:

Funktechnische Fachliteratur

Moderne Funkortung

Von Dr.-Ing. W. E. Meyer. 112 Seiten, 83 Bilder. Kartoniert 9 DM, in Halbleinen 11 DM. Franz Westphal Verlag, Wolfshagen-Scharbeutz.

Der Verfasser beschränkt sich konsequent auf die Behandlung der Verfahren, die sich in der Praxis durchgesetzt haben und in mancher Hinsicht bereits zur Standardausrüstung von seegehenden Fahrzeugen und Flugzeugen gehören. Somit wird nichts grundsätzlich Neues geboten, sondern Bekanntes und Bewährtes straff zusammengefaßt.

Nach einer Einführung in die Funkortung mit Erläuterung der trigonometrischen und elektrophysikalischen Grundbegriffe wird zuerst die Funkpeilung mit modernen Geräten behandelt, also der Kreuzrahmenpeller mit Goniometer und der Sichtfunkpeiler. Es folgen die Hyperbel-Navigation, vorzugsweise am Beispiel Loran und Deccs dargestellt, und moderne Drehfunkteuer mit einer ausführlichen Besprechung des VOR-Systems. Die beiden nächsten Kapitel betreffen Radar und Funkortung in der Flugsicherung. Abgeschlossen wird das Büchlein mit Ausführungen über die Astropeiler; hier dient als Beispiel der 25-m-Radioteleskop auf dem Stockert. Der geringe Umfang des Buches verhindert naturgemäß eine ausführliche Darstellung des fast unübersehbaren Stoffes; trotzdem können wir diese Arbeit empfehlen, sie erleichtert die Übersicht und die Orientierung. K. T.

Sender-Baubuch für Kurzwellen-Amateure. I. Teil

Von Ingenieur H. F. Steinhauser. 128 Seiten mit 56 Bildern, darunter 9 moßstäblichen Konstruktionszeichnungen. Doppelband 31/32 der Radio-Praktiker-Bücherei. 6. u. 7. Aufl. Preis 3.20 DM. Franzis-Verlag München.

Dieses Buch, das bereits in der 6. und 7. Auflage erscheint, gehört zu den Bestsellern der RPB. Zwei von vielen Beispielen seien hier erwähnt, um die Bellebtheit des Buches zu beweisen: Wer nachts den Funkverkehr im 80-m-Amateurband beobachtet, kann immer wieder Fachgespräche belauschen, in denen von Steinhausers Sender-Baubuch die Rede ist, und wer Glück hat, kann Zeuge sein, wie sich zahlreiche Funkamateure persönlich beim Verfasser Rat und Hilfe über technische KW-Probleme holen. Kürzlich erfuhr der Rezensent durch Zufall, daß sich eine kleine Gruppe ausländischer Amateure, die der deutschen Sprache nicht mächtig war, "den Steinhauser" auf schwierigen Umwegen aus Deutschland besorgte und ihn dann mühselig mit Hilfe eines Wörterbuches in die Landessprache übersetzte. Man scheute die Arbeit nicht, um auf diese Weise in den Genuß der wohlüberlegten Konstruktionen zu gelangen.

den Genuß der wohlüberlegten Konstruktionen zu gelangen.

Man könnte viele Besonderheiten anführen, die dieser Veröffentlichung zu ihrem Erfolg verhalfen, aber eine davon sel besonders hervorgehoben: Der Autor weiß, daß Funkamateure immer größere Vollkommenheit ihrer Sender anstreben und er weiß auch, daß die Amateurkasse nur selten prall gefüllt ist. Deshalb beschreibt er unter anderem eine Senderkonstruktion, die sich schrittweise ausbauen läßt, aber doch von der ersten Baustufe an voll betriebsfähig ist. Die erste Baustufe ergibt ein billiges 5-W-Senderchen mit dem Spitznamen "QR-Peter", das sich allmählich zu einer hochmodernen Sendeanlage mit 100 W Hf-Leistung auswächst, die sich auf alle Amateurbänder umschalten läßt.

Seinen legendären Ruf als "Alleswisser" erwarb sich der Autor bei seinen Amateur-Kollegen durch die zahllosen eingestreuten Winke, in denen er so ungefähr alle Tücken und Fallstricke bespricht, über die man beim Senderbau stolpern kann. Dieses ausgezeichnete Buch gehört in die Bibliothek eines jeden KW-Amateurs!

Praktische Hilfsmittel für Werkstatt und Betrieb

Sonderdruck aus der Technischen Rundschau. 40 Seiten mit vielen Bildern. Heft 6 der Sonderhefte der TR-Reihe. Hallwag GmbH, Stuttgart.

Diese interessante Schrift verdankt ihr Entstehen ähnlichen Überlegungen wie die beiden RPB-Bände "Schliche und Kniffe". Hier wie dort wurden Werkstattwinke aus der Technischen Rundschau bzw. aus der FUNKSCHAU gesammell und geschlossen veröffentlicht. Das vorliegende Buch befaßt sich mit der Mechaniker-Werkstatt und enthält eine Fülle von Ratschlägen, die sich erfahrene Praktiker in der Werkstatt und in der Fabrik ausdachten, um ihre Arbeit besser, genauer und zeitsparender verrichten zu können. Vieles von dem Gezeigten ist nicht nur für den hauptberuflichen Fachmann von Bedeutung, es hilft auch jedem, der sich nur nebenbei mit der Feinmechanik befaßt. Kühne

Atomstrahlen - Geigerzähler

Von Heinz Richter. 213 Seiten mit 112 Bildern. Preis in Halbleinen 12 DM. Franckh'sche Verlagshandlung, Stuttgart.

In seiner bekannten volkstümlichen Art stellt Richter hier das Wichtigste über strahlende Stoffe, elektronische Strahlungserzeuger und Strahlungsmesser sowie über einige Anwendungen radioaktiver Strahlen zusammen. Besonderes Interesse dürften die Berichte über die eigenen Versuche des Ver-

fassers erwecken, die sich z. B. auch auf die Eichung von Gelger-Müller-Zählern erstrecken. Ein Literaturverzeichnis verweist auf die benutzten Quellen, so daß dieses als erste Einführung gedachte Buch als Ausgangsbasis für die Weiterbildung dienen kann.

Kurzwellen-Amateurantennen für Sendung und Empfang

Von Werner W. Diefenbach. 64 Seiten mit 76 Bildern und 8 Tabellen. Band 44 der Radio-Praktiker-Bücherei. 4. und 5. Auflage. Preis 1.60 DM. Franzis-Verlag, München.

Wer DL 3 VD (das ist das Kurzwellen-Rufzeichen des Verfassers) in seinem Allgäuer Landhaus besucht, fühlt sich in das Funkamateur-Paradies versetzt. Ein gutes Dutzend der verschiedensten Sende- und Empfangsantennen ziert das Dach und zu einem hohen Holzmast spannen sich zahlreiche Langdrähte. Kommt man einige Wochen später erneut zu Besuch, dann hat sich das Bild völlig geändert. Wieder sind es andere Antennenformen, die gerade mit der eigenen Sendestation erprobt werden. Die Antennentechnik ist ein Spezial-Hobby des bekannten Autors, so daß gerade diesem Buch aus seiner Feder besonderer Wert zukommt. Alles, was er beschreibt, ist von A bis Z praktisch erprobt und hat sich vielfach bestens bewährt. Für die Kenner der Materie sel bemerkt, daß das nicht nur für die elektrischen Eigenschaften, sondern genau so für die mechanische Stabilität zutrifft, denn . . . im Allgäu kann es sehr stürmisch seln und im Winter gibt es dort eine Menge Schnee und Eis!

Nach einer Einführung in die allgemeinen Grundlagen der KW-Antennentechnik werden die wichtigsten Antennenformen und ihre Bemessungen sehr gründlich besprochen; daß dabei Dreh- und Richtantennen nicht fehlen, versteht sich von selbst. Ein ganzer Abschnitt behandelt die Ankopplungsarten an den Sender und ein weiterer macht mit Antennenmessungen vertraut.

Im Schlußteil, "Ratschläge für den praktischen Aufbau", findet der Funkamateur Hinweise auf Vorschriften und Haftpflicht-Fragen, also wichtige Dinge, die nach Kenntnis des Rezensenten bisher viel zu wenig Beachtung fanden. Dieser jetzt in Neuauflage erschienene RPB-Band geht nicht nur die aktiven Funkamateure, sondern auch die SWLs (Höramateure) an, denen er zeigt, wie Hochleistungs-Empfangsantennen beschaffen sein müssen. ks

Valvo-Spezialröhren-Handbuch 1958

1048 Seiten mit zahlreichen Tabellen und Kurven. Broschiert. Schutzgebühr 7 DM. Dokumentations-Abteilung der Valvo GmbH, Hamburg 1, Burchardstraße 19.

Bereits im Vorjahr beschritt Valvo einen neuen Weg mit den Röhrenunterlagen für Entwicklungsstellen. An Stelle der sogenannten Ringbücher wird kurzerhand jedes Jahr ein neues vollständiges Handbuch herausgegeben. Man ist damit gegen Verlust von Einzelblättern gesichert und weiß zuverlässig, daß der betreffende Jahrgang auf neuestem Stand ist. Das Spezialröhren-Handbuch kann gegen eine Schutzgebühr von 7 DM bezogen werden. Es gliedert sich in 11 Gruppen, darunter kommerzielle Röhren, Elektronenstrahlröhren, Fotozellen, Stabilisatorröhren und Laufzeitröhren. Die eigentlichen Rundfunkröhren sind in diesem Band nicht entbalten.

Elektrowerkstoffe

Isolierte Leitungen und Kabel für die Fernmeldetechnik. Herausgegeben von der Arbeitsstelle für Betriebliche Berufsausbildung Bonn. Preis: 3.60 DM. Verlag: Beuth-Vertrieb GmbH, Berlin W 15, Köln, Frankfurt (Main).

In einer Sammelmappe sind 23 Blätter im DIN A 4-Format mit Erläuterungen, Tabellen und Skizzen über isolierte Leitungen und Kabel für Unterrichtszwecke, als Typenübersicht und als Hilfe im Planungsbüro, Lager oder Einkauf zusammengestellt. Eines der Blätter enthält auch knappe Angaben über Hochfrequenzlitzen, Aufbau von Hochfrequenzleitungen und -Kabeln.

DIN-Bezugsquellen für normgerechte Erzeugnisse

Herausgegeben vom Deutschen Normenausschuß. 2. Nachtrag Mai 1958. 80 Seiten. Preis 6 DM. Beuth-Vertrieb GmbH, Berlin-Köln.

Der vorliegende 2. Nachtrag enthält rund 6700 neue Meldungen von etwa 600 verschiedenen Firmen, die DIN-Teile herstellen. Besonders erschöpfend werden Armaturen, Prüfgeräte und Werkzeuge behandelt. Das Heft wird im Konstruktionsbüro besonders gern zu Rate gezogen, um z. B. zu erfabren, welche genormten Teile von anderen Firmen bezogen werden können.

Theorie der Spulen und Übertrager

Von Dr. Richard Feldtkeller. 3. Auflage. 187 Seiten mit 143 Bildern. Preis in Leinen: 24 DM. S. Hirzel Verlag, Stuttgart.

Eines der grundlegenden Werke der Nachrichtentechnik liegt hier in dritter Auflage vor. Es beschreibt die Eigenschaften der Spulen und Übertrager, deren Kenntnis notwendig ist, um ihre Baudaten aus den gestellten Anforderungen vorauszuberechnen. Abschnitt A behandelt hochpermeable Spulenkerne, im Abschnitt B werden die gebräuchlichen Formen der Spulen aufgeführt, und in dem besonders praxisnahen Abschnitt C werden Frequenzgang der Übertrager sowie Bemessung von Transformatoren und Siebdrosseln erörtert.

Netzwerksynthese

Nachrichtentechnische Fachberichte, Band 8. Herausgeber Dipl.-Ing. Johannes Wosnik. 64 Seiten, 92 Bilder, kartonniert 4 DM. Verlag Friedr. Vieweg & Sohn, Braunschweig.

Der Fachbericht enthält neun Aufsätze verschiedener Autoren, von denen als bezeichnend für das Gesamtgebiet genannt seien:

Feizer, Das Übertragungsmaß von Netzwerken mit vorgeschriebenem Einschwingvorgang

Kell, Filter und Laufzeitentzerrer für die Fernsehübertragung auf Kabeln Ebel, Negative Widerstände mit Transistoren in der Netzwerksynthese Poschenrieder, Stelle Quarzfilter großer Bandbreite in Abzweigschaltung.

Das Heft dürfe vorwiegend für den Entwicklungsingenieur in der kommerziellen Nachrichtentechnik von Bedeutung sein.

Ein tragbarer Kurzwellenempfänger mit großer Empfindlichkeit

Der nachfolgend beschriebene Kurzwellenempfänger für 7,5...20,2 MHz entstand auf Anregung interessierter Kurzwellenhörer für die Verwendung in subtropischen Gebieten. Es wurde zur Bedingung gemacht, daß nur e in Deac-Sammler großer Kapazität mit 1,25 V Spannung eingebaut wird. Die niedrige Betriebsspannung verlangte eine höhere Stufenzahl im Nf-Verstärker, bot andererseits aber eine gewisse zusätzliche Sicherheit gegen Transistorüberlastung bei höherer Umgebungstemperatur. Dank der richtigen Auswahl der Transistortypen und bei sorgfältiger Bedienung des zweiten Lautstärkenreglers bleibt das Rauschen sehr gering. Bei richtigem Aufbau arbeitet der fünfstufige Nf-Verstärker stabil, zumal sein Eingang por und hinter dem Übertrager 30:1 und dem ersten Lautstärkenregler sehr gut gegen das Eindringen von Hf-Spannung abgeriegelt ist. Immerhin möchten wir den Nachbau des Gerätes nur erfahrenen Praktikern empfehlen; es handelt sich hier nicht um ein "Kochrezept", vielmehr sind Erfahrungen und einige Meßgeräte nötig ...

Der in der FUNKSCHAU 1958, Heft 5, Seite 109, beschriebene tragbare Kleinempfänger für Kurzwellen-Empfang regte an, das Gerät weiter zu vervollständigen und für Lautsprecherwiedergabe geeignet zu machen, Wegen der Raumersparnis durfte nur ein gasdichter Deac-Sammler verwendet werden, so daß also auch bei Lautsprecherbetrieb die Speisespannung für die Gegentakt-Endstufe nur 1,25 V betrug. Trotz dieser geringen Spannung gelang es, die Endstufe in ihren elektrischen Eigenschaften für eine mittellaute, verzerrungsfreie Wiedergabe zu dimensionieren.

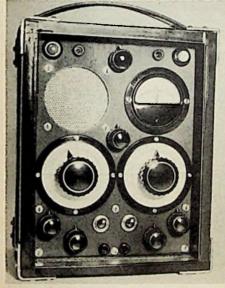


Bild 1. Gesamtansicht des Empfängers. Das Holzgehäuse ist mit Kunststoff überzogen

Durch Verwendung des besten im Handel erhältlichen Materials und durch einen exakten Aufbau, der den Bedingungen der Kurzwellentechnik entspricht, konnte die Empfindlichkeit des Empfängers auf das höchsterreichbare Maß gesteigert werden. So war es auch trotz der nichtmetallischen Frontplatte aus Super-Pertinax (3 mm) möglich, die Einflüsse der Handkapazität bis zum Rückkopplungseinsatzpunkt vollständig zu beseitigen. Obwohl das Gerät in einfacher Geradeausschaltung weder mit Pendelrückkopplung noch als Reflexempfänger arbeitet, ist es für seine Klasse überdurchschnittlich selektiv und bei Kopfhörerempfang ebenso empfindlich wie ein 7-Kreis-Vorstufensuper. Dem interessierten Leser sei aber der Nachbau nur dann empfohlen, wenn entspre-chende Meßgeräte (Oszillografen, Röhrenvoltmeter usw.) zum Nachweis evtl. auftretender Rückwirkungen innerhalb und zwischen den einzelnen Stufen des Empfängers zur Verfügung stehen. Außerdem muß man bei unsachgemäßem Aufbau mit anderen störenden Erscheinungen rechnen, die nur schwer zu beheben sind. Sollten jedoch Störungen leichter Art (Pfeifneigung usw.) vorhanden sein, so ist es in jedem Fall möglich, ohne Einschränkung der Empfangsleistung Entkopplungsmaßnahmen durchzuführen, wobei sich größere Eingriffe in das Gerät vermeiden lassen. Sämtliche Nf-Leitungen sind abgeschirmt und ebenso wie die Hf-Verbindungen so kurz wie möglich verlegt. Der Empfangsbereich des Gerätes liegt bei normaler Ankopplung der Antenne zwischen 7,5 MHz und 20,2 MHz. Somit stehen die Kurzwellensender des 16-, 19-, 25- und 31-m-Bandes, das 20-m-Amateurband, die Eichfrequenz 10, 15 und 20 MHz und nicht zuletzt die Satelliten-Frequenz 20,005 MHz zur Verfügung.

Der Hochfrequenzteil

Die Rückkopplungsstufe weist besondere, kurzwellentechnisch bedingte Schaltungsmaßnahmen auf. Neben dem selbstverständlichen zentralen Erdungspunkt, zu dem auf kürzestem Wege alle Erdleitungen aus 4 mm breitem Kupferband führen, besitzt die Schaltung zur Rückkopplungsregelung die Möglichkeit der Grob- und Feineinstellung im Verhältnis 1:10 (bei Verwendung linearer Regler). Dadurch wird die Einstellung der schwächsten Sender sehr leicht gemacht, denn man kann die Schirmgitterspannung auf besser als ½0 V genau regeln. Im Anoden-kreis der DL 651 liegt die Rückkopplungsspule mit zwei Kondensatoren, von denen der erste ein Trimmer von 4...100 pF ist. Mit ihm wird die mittlere Höhe der Rückkopplungseinsatzpunkte am oberen und unteren Bereichsende eingestellt. Nach anschließender Siebung gelangt die Niederfrequenz in einen Übertrager, der den Anpassungsverhältnissen zwischen Röhre und Transistor-Verstärker entspricht. Diese Kopplungsart hat sich auch bei Pentoden sehr gut bewährt. Die Primärwicklung des Übertragers ist zwecks

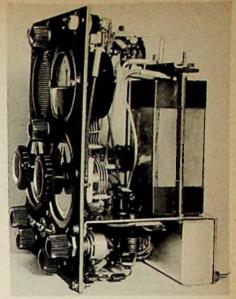


Bild 2. Seitenansicht mit Blick auf den Hf-Teil mit der Röhre DF 651 und dem Deac-Sammler

Elektrische Daten

 $U_{ges} = 1.25 V$

= 55 mA (64 mA)

I_{ges} N_{ges} = 68,75 mW (80 mW)

Die eingeklammerten Werte gelten bei Kollektor-

= 10

IVI (Kopfhörerverstärker) = 0,85 mA

Iv2 (Lautsprecherverstärker)

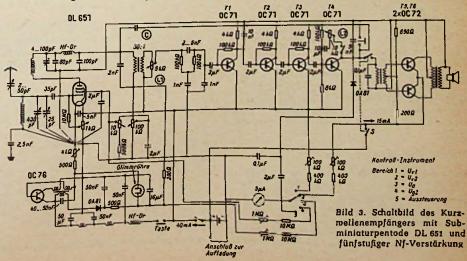
= 15,00 mA (Kollektor-Ruhestrom) = 24,00 mA (Kollektor-Spitzenstrom)

= 27,9 mA IGleichsp.-Wandl. = 1,25 mA

IR parallel

= 95 ...332 μA u_a2 = 13,5... 37 µA

= 38 ... 28 V = 12.8... 19 V


Diese Werte wurden bei den Rückkopplungseinsatzpunkten am oberen und unteren Ende des Empfangsbereichs bei loser Antennenankopplung gemessen.

= 41 U_{g2} = 0,04 V

Diese Werte wurden bei Nullstellung der Rückkopplungs-Potentiometer gemessen.

Empfindlichkeit:

Telefoniesignale, die von einem 17-Röhren-Doppelsuper mit zwei Hf-Stufen mit S1 registriert werden, sind mit dem beschriebenen Empfänger mit der gleichen Antenne ebenfalls an jeder Stelle des Empfangsbereichs bei Kopfhörerempfang ausreichend laut hörbar.

Aus der Welt des Funkamateurs

Ableitung von Hf-Resten mit einem Kondensator von 2 nF überbrückt. Er hebt bestimmte Frequenzen im Hörbereich an, beschneidet zu hohe Frequenzen und engt den Mf-Kanal durch die abstimmende Wirkung ein.

Der Kopfhörer-Verstärker

Der erste Lautstärkeregler L1 des mit vier Transistoren bestückten Verstärkers liegt parallel zur Sekundärwicklung des Übertragers. Ihm fällt die Aufgabe zu, die Intensität der Eingangssignale derart herabzusetzen, daß keine Übersteuerung in den letzten beiden Stufen eintritt. Der zweite Lautstärkeregler L2 in der letzten Stufe macht von der Gegenkopplung zwischen Kollektor und Basis des Transistors Gebrauch. Er hat

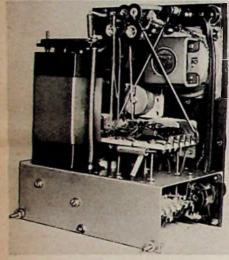


Bild 4. Blick von hinten auf Sammler, Lautsprecher und den auf einer Keramikplatte vormontierten Kopfhörerverstärker (Transistoren T 1 bis T 4)

bei voller Verstärkung in den drei vorhergehenden Stufen kleine Signale in ihrer Lautstärke zu regeln und sie gegenüber dem Transistor-Rauschen, das bei der hohen Verstärkung schon bemerkbar ist, gehörmäßig anzupassen; außerdem wirkt dieser Regler indirekt als Klangfarbenregler.

Erwähnenswert ist noch die Siebkombination im Eingang des Verstärkers. Sie soll die letzten Hf-Reste ableiten und den schon etwas eingeengten Nf-Kanal weiter beschneiden, und zwar durch Dämpfen der tiefen Frequenzen. Die Verstärkungsreserve ist groß genug, um diese Maßnahmen durchführen zu können. Trotzdem ist der Nf-Kanal noch nicht schmalbandig genug, und die Durchlaßkurve ist zu slach. Um eine höhere Steilheit zu erzielen, wurde vom Kollektor des vierten Transistors auf das "heiße" Ende der Primärwicklung des Eingangsübertragers kapazitiv rückgekoppelt. Die Kapazität des Kondensators C darf nur zwischen 3 und 10 pF liegen. Ist sie zu groß, so tritt das bekannte "Klingeln" wie bei zu hochgezüchteten Quarzfilterkreisen auf. Der beste Wert liegt zwischen 5 und 7 pF. Noch günstiger ware hier die Verwendung eines Drehkondensators von 1...10 pF, mit dem die "Bandbreite" variabel abgestimmt werden

Der Lautsprecher-Verstärker

Obwohl dieser Verstärker sehr einfach aufgebaut ist, hat er die schwierige Aufgabe zu erfüllen, unverzerrten Lautsprecherempfang bei einer Betriebsspannung von 1,25 V zu ermöglichen. Hierbei erwiesen sich die Transistoren 2 X OC 72 als gut brauchbar. obwohl sie für viel höhere Leistungen in

anders aufgebauten Schaltungen gedacht sind. Durch den zweipoligen Ein-Aus-Schalter S wird dieser Verstärker mit dem Hauptstromkreis und dem Kopfhörerverstärker verbunden.

Die Stromversorgung

Sämtliche Transistoren und der Heizfaden der DL 651 werden direkt von dem gasdichten Deac-Sammler 1,25 V/7,5 A versorgt. Die Anoden- und Schirmgitter-Spannungen erzeugt ein Gleichspannungswandler, der als Industriebauteil für Kofferempfänger mit gemischter Bestückung im Handel erhältlich ist. Er ist mit dem Schalttransistor OC 76, der Diode OA 81 und einer Glimmröhre als Überspannungsschutz bestückt und schwingt sicher bei 1,25 V Speisespannung, Trotzdem ist im Primär-Stromkreis eine Taste vorgesehen, mit der bei nicht sofortigem Anschwingen die Stromzufuhr einige Male unterbrochen werden kann - ähnlich dem wiederholten Starten eines Kraftwagens. Sollte auch dies nicht helfen, so muß eine weitere Taste (sie ist im Empfänger vorsorglich eingebaut) mit einem 50-Ω-Widerstand in Reihe zwischen Kollektor und Emitter des OC 76 gelegt werden. Wird sie betätigt, gelingt der Start des Gleichspannungswandlers garantiert. Man kann jedoch auf diese Taste auch verzichten. Außerdem ist die Abstrahlung von Oberwellen auch bei abgeschirmten Leitungen, die zur Taste führen, sehr stark. Sie kann den Empfang über den gesamten Empfangsbereich empfindlich stören. Hier könnte nur ein dicht am Gleichspannungswandler angebrachtes und abgeschirmtes Schaltrelais Abhilfe schaffen.

Die Spannungskontrollen

Hierzu eignet sich jedes Instrument zwischen 10 und 30 µA Vollausschlag. Das im Empfänger eingebaute Instrument mit einem Vollausschlag von ± 5 µA ist zwar empfindlicher, wurde aber eigentlich nur benutzt, weil es anderswo nicht passender verwendet werden konnte. Durch Vorschalten geeigneter Widerstände können mit Hilfe eines Umschalters die Speisespannungen beider Transistorverstärker, die Heizfadenspannung und die Anoden- und SchirmgitterSpannungen der DL 651 gemessen werden. Außerdem läßt sich das hochempfindliche Meßgerät noch als Aussteuerungsmesser und somit indirekt zur Abstimmanzeige verwenden.

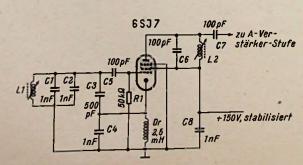
H. M. Ernst, DE 10333

Steuersender mit Induktivitätsabstimmung

Durch den Clapp-Oszillator hat die Schaltung des Steuersenders (VFO) für den Amateurbetrieb neue Anregungen erhalten. Rückkopplung von der Katode, große Kapazität an Steuergitter und Katode sowie die Verwendung der Anode zum Auskoppeln der verstärkten Schwingspannung kennzeichnen diese Schaltung. Ihre Vorteile hinsichtlich der Stabilität der hervorgebrachten Frequenz versucht man immer wieder auf die anderen bekannten Oszillatorschaltungen zu übertragen, um dadurch die Nachteile der Clapp-Schaltung zu vermeiden, die in der Notwendigkeit hoher Spulengüte, kleiner Frequenzvariation und über das Band schwankender Ausgangsspannung bestehen.

Ein Beispiel für die Anwendung der Prinzipien des Clapp-Oszillators auf die Anordnung nach Colpitts zeigt das beigefügte Schaltbild. Parallel zur Spule L1 des frequenzbestimmenden Resonanzkreises liegen die verhältnismäßig großen Kondensatoren C1 und C2 mit je 1 nF und die Reihenschaltung von C3 und C4, die eine Gesamtkapazität von 333 pF aufweist, so daß die Gesamtkapazität des Kreises 2333 pF ausmacht; sie liegt parallel zur Kapazität, die Steuergitter und Katode gegeneinander haben. C3 und C 4 bilden einen kapazitiven Spannungsteiler, dem die durch Spannungsabfall an der Hochfrequenzdrossel Dr in der Katodenleitung entstehende Hf-Spannung zugeführt wird.

Gegenüber dem Clapp-Oszillator ergibt sich der Vorteil, daß die Anordnung mit wesentlich größerer Kreiskapazität und geringerer Kreisgüte arbeitet. Infolgedessen ist es möglich, mit induktiver Abstimmung einen den Erfordernissen der Praxis entsprechenden Frequenzbereich zu bestreichen, der im vorliegenden Falle zwischen 1,7 und 2,2 MHz liegt, so daß nach Frequenzverdopplung im 80-m-Band gearbeilet werden kann. Dabei braucht der Kreis L 2/C 6 nicht auf die jeweilige Arbeitsfrequenz abgestimmt zu sein. Es genügt, ihn einmalig auf Bandmitte (1950 kHz) einzustellen, um über den ganzen Bereich fast konstante Ausgangsspannung zu erhalten. Durch Stabilisierung der Schirmgitter- und Anodenspannung wird der frequenzändernde Einfluß insbesondere der Schirmgitterspannung ausgeschaltet.


Während der Aufbau der Spule L2 nicht kritisch ist, hängt von der Anordnung der Wicklung der Spule L1 der Einfluß des Spulenkerns auf die Frequenzeinstellung inhohem Maße ab. Im Mustergerät umfaßt sie 18 Windungen Lackdraht von 1 mm Durchmesser mit einem Windungsabstand von 8 mm.

Der Spulenkern sitzt am Ende einer Schraubspindel aus Metall, so daß er sehr genau geführt werden kann. Mit einem Gewinde 6-40 (Standard American Screws) ergibt eine Umdrehung eine Frequenzänderung von 40 kHz. Zur exakten Einstellung trägt die Schraubspindel an ihrem freien Ende ein Preßstoffzahnrad von etwa 6 cm Durchmesser.

Der Kern der Spule L2 wird ebenfalls durch eine Schraubspindel geführt, doch ist diese mit einem Schlitz versehen, um den Kern einmalig mt dem Schraubenzieher einstellen zu können. Der Einfluß des Kerns auf

die Änderung der Selbstinduktion, die besonders bei L 1 von Bedeutung sein kann, läßt sich dadurch verkleinern, daß ein Teil der Windungen ohne Zwischenraum gewickelt wird, der Rest mit 1 mm Abstand. Ragt der Kern in die Windungen mit Abstand hinein, so ist ein Einfluß auf die Frequenzvariation geringer als im zuvor angeführten Falle.

Gallagher, J.: Slug-Tuned VFO Has Stable Output. Radio-Electronics. 1958, Juni, Seite 38

Schaltbild eines VFO mit Induktivitätsabstimmung

Hochwertiger 6-W-Verstärker mit kleinen Abmessungen

Ausgangsleistung: 6W - Frequenzbereich: 20...16000 Hz - Klangregelung: Höhen ± 15 dB, Bässe ± 12 dB - Lautstärkeregelung: gehörrichtig - Eingang: 200 mV an 1 M Ω - Ausgang: 5 Ω

Bei dem hier beschriebenen Verstärker (Bild 1) handelt es sich um ein Gerät, das sich für Schallplatten- und Tonbandwiedergabe hervorragend bewährt hat. Dank seiner geringen Ausmaße kann der Verstärker leicht in eine bereits vorhandene Phonovitrine eingebaut werden.

Bild 2 zeigt die Schaltung. Bei der Entwicklung wurde auf eine weitgehende Regelung der hohen und tiefen Frequenzen Wert gelegt. Höhen und Bässe sind mit zwei getrennten Potentiometern kontinuierlich regelbar. Die vom Tonabnehmer abgegebene Nf-Spannung gelangt über den Widerstand R 1 an das RC-Glied P 1, C 1. Das Potentiometer P 1 dient als Baßregler. Widerstand R 1 bildet zusammen mit der Kapazität C 2 und Hochtonregler P 2 einen Tiefpaß.

Die Niederfrequenzspannung wird nun über den gehörrichtigen Lautstärkeregler P3 und den Kopplungskondensator C 4 dem Gitter der Nf-Vorröhre zugeführt. Durch den Anlaufstrom der EF 86 stellt sich an dem Gitterableitwiderstand R 3 eine feste Gittervorspannung ein. Anoden- und Schirmgitterspannung werden durch das Siebglied R 10. C 7 ausreichend gesiebt.

Über 50 nF wird die verstärkte Nf-Spannung an das Gitter der Endröhre geführt Der 1-kΩ-Widerstand R 11 stellt in Verbindung mit der Kapazität Gitter-Katode einen Tiefpaß dar, der Schwingen im Hf-Gebiet verhindern soll.

Sowohl die Katodenkombination der Lautsprecherröhre, als auch sämtliche Koppelkondensatoren und Gitterableitwiderstände sind für Breitbandwiedergabe dimensioniert. Um einer Schirmgitterüberlastung der EL 84 vorzubeugen, wurde in die Zuleitung ein 100-Ω-Schutzwiderstand eingefügt. Der Ausgangsübertrager, der ebenfalls für Breitbandwiedergabe dimensioniert ist, ist eine Sonderanfertigung der Firma Engel. Ein frequenzabhängiger Gegenkopplungskanal führt einen Teil der am Ausgangsübertrager entstehenden

Spannung an den Lautstärkeregler zurück. Die Gegenkopplung besteht aus einem Tiefpaß mit den Gliedern R 15, C 9, R 16 und einem Hochpaß mit C5, R7, R5, R4. Durch diese Maßnahme wird die Durchlaßkurve des Verstärkers korrigiert. Bild 3 läßt die Wirkungsweise der Gegenkopplung und der Klangregler erkennen.

Der Netzteil

Die für den Verstärker nötigen Spannungen werden einem ausreichend bemessenen Netzteil mit dem Netztransformator N 4 a entnommen. Das Gerät ist mit 0,4 A abgesichert und auf die Netzspannungen 110, 125 und 220 V umschaltbar. In der Siebkette C 11, D 2, C 12 wird die vom Gleichrichter abgegebene Gleichspannung sorgfältig ge-

Die Lautsprecher

Für den Verstärker sind ein Tiefton- und zwei Hochtonlautsprecher vorgesehen. Die beiden in Reihe geschalteten Hochtonsysteme werden über einen 4-µF-Elektrolytkondensator gespeist. Bei der Hintereinanderschaltung ist darauf zu achten, daß sich die Membranschwingungen nicht akustisch aufheben. Sämtliche Lautsprecher sind auf einer Schallwand befestigt. Sie besteht nach Bild 4 aus 20 mm starkem Preßspan und ist als Ecksäule ausgebildet. Um eine bessere Verteilung der Höhen zu bekommen, sind die beiden Hochtonsysteme mit Hilfe der in Bild 5 dargestellten Holzringe so angebracht, daß das eine schräg nach oben, das andere jedoch schräg nach unten geneigt ist. Als weiterer Vorteil erwies sich das Anbringen eines rechteckigen Ausschnittes unterhalb des Tieftonlautsprechers (Bild 4). Durch diese Maßnahme ergab sich eine kräftigere Abstrahlung der Bässe¹). Bei der Auswahl des Bespannstoffes empfiehlt es

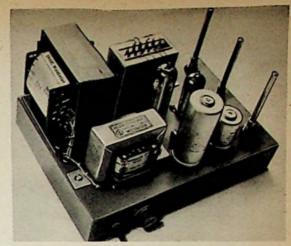


Bild 1. Ansicht des fertigen Verstärkerchassis

sich, kein zu dickes Material zu verwenden, da sonst die hohen Frequenzen beeinträchtigt werden. Eine ringsum angebrachte Zierleiste trägt zur Verschönerung der Säule bei. Die Anordnung der Bohrungen geht aus der Maßskizze hervor.

Aufbau und Verdrahtung

400

120 .80 .80 . 120

90

Der Aufbau der Einzelteile erfolgte auf einem Chassis nach Bild 6 aus 0,8 mm starkem Eisenblech. Um ein Minimum an Brummeinstreuung zu erreichen, wurde der Aus-

1) Die enge Nachbarschaft dieses Ausschnittes zum Tieftonlautsprecher ergibt theoretisch eine Benachteiligung der tiefen Töne; anscheinend handelt es sich hier um eine Hohlraumresonanz, wenn der Verfasser kräftigere Bässe erzielt hat. Die Wirkung ist also auszuprobieren!

(Anmerkung der Redaktion)

Hochtonlaut-

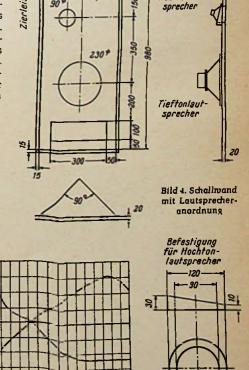


Bild 5. Auflage für Hochtoniautsprecher

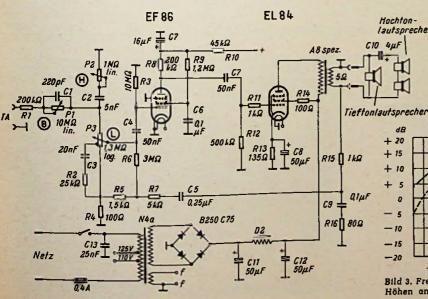
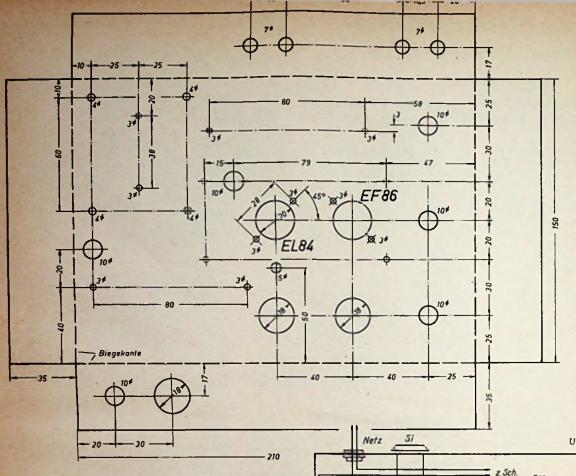
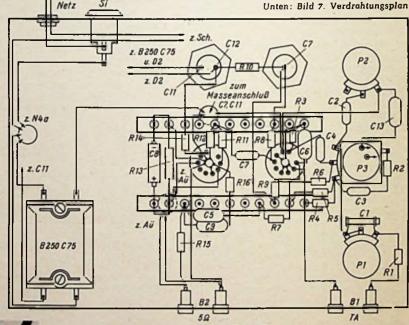



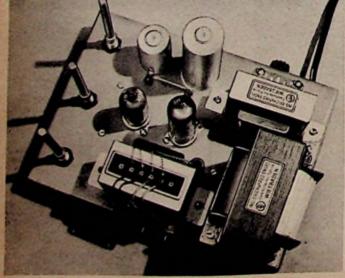
Bild 2. Schaltung des Verstärkers

30Hz 60 120 250 500

gangsübertrager um 90° gegenüber dem Netztransformator versetzt. Ebenfalls um diesen Winkel gedreht wurde die Siebdrossel D2 (Bild 8). Für die Einführung der Leitungen ins Innere des Chassis befinden sich unmittelbar neben Netz- und Ausgangstransformator je eine Kabeldurchführung. Der Gleichrichter ist im Innern des Chassis, unterhalb des N 4 montiert (Bild 9). Das Chassis sorgt so für eine gute Abkühlung. Die Ausgangsbuchsen befinden sich an der Chassisseitenwand unterhalb des Ausgangsübertragers. Gleich neben dem Potentiometer P1 sitzen die Anschlußbuchsen für den Tonabnehmer, Beiderseits der Röhrenfassungen sind Lötösenleisten zur Unterbringung der Schaltmittel befestigt. Die genaue An-ordnung der Widerstände und Kondensatoren geht aus dem Verdrahtungsplan (Bild 7) hervor.

Ernst Knappe


Bild 6. Bohrplan für das Chassis. Abmessungen, fertig gebogen: 150 × 210 × 35 mm. Material: 0,8 mm Eisenblech


Im Modell verwendete Spezialteile

1 Netztransformator Typ N 4 a Fa. Engel, Ausgangsübertrager A 8 spez. Wiesbaden 1 Netzdrossel D 2 1 Gleichrichter B 250 C 75 Elektrolytkondens. 50+50 µF/385 V Elektrolytkondens. 16 µF/385 V Siemens Elektrolytkondens. 50 µF/35 V 1 Elektrolytkondensator 4 µF 2 Röhren: EF 88 und EL 84 Potentiometer 1 $M\Omega$ lin. Preh, Potentiometer 1,3 MΩ log. m. Sch. Bad Neustadt I Potentiometer 10 MΩ lin. 1 Sicherungselement Wickmann 1 Tieftonlautsprecher P 25/25/11 Isophon 2 Hochtonlautsprecher HM 10/13/7 Isophon

Unten: Bild 8. Die Teile auf der Oberseite

Widerstände und Kondensatoren nach Bild 2

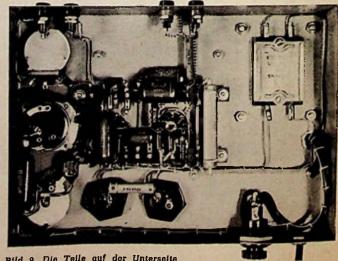


Bild 9. Die Teile auf der Unterseite

Ein kommerzielles Steuergerät

Verschiedene unserer Leser, die sich besonders für die Ela-Schaltungstechnik interessieren, baten darum, den Aufbau eines kommerziellen Mischpultes zu besprechen. Sie wiesen in ihren Zuschriften darauf hin, daß sich dabei reizvolle Vergleiche mit den Hi-Fi-Steuergeräten ergäben, die ja häufig gleichfalls mit "Mischpulten" ausgestattet sind. Wir kommen dieser Anregung gern nach und unterziehen nachstehend das "Reise-Mischpult" von Telefunken einer genaueren Betrachtung.

Mischpult, Mischpultverstärker oder Steuergerät?

Die fortschreitende Entwicklung auf dem Ela-Gebiet regt dazu an, wieder einmal eine "Inventur" der Begriffe vorzunehmen: In der Frühzeit der Übertragungstechnik verstand man unter einem Mischpult die Zusammenfassung von zwei oder mehreren niederohmigen eine Mischschaltung bildenden L- oder T-Reglern auf einer gemeinsamen, pultförmigen Montageplatte. Der Ausgang einer solchen röhrenlosen Anordnung führt gewöhnlich über eine längere niederohmige Leitung zu einem abseits aufgestellten gemeinsamen Summenverstärker. So oder so ähnlich verfährt man jedenfalls in der Studio-Schaltungstechnik.

In Kraftverstärkern für private Übertragungsanlagen kann man auf die teuren L- oder T-Regler verzichten, weil sich hier ein einfacherer Ausweg von selbst anbietet: Mischregler, Summen- und Endverstärker werden in einem gemeinsamen Gehäuse zusammengefaßt, und da die Verbindungen zwischen Mischteil und erster Verstärkerstule nur wenige Zentimeter lang sind, kann man mit normalen, hochohmigen Reglern mischen, ohne daß Höhenbeschneidungen eintreten. Diese Gerategruppe ist unter dem Namen "Mischpultverstärker" bekannt.

Soweit ist alles klar, aber in letzter Zeit entwickelte sich eine dritte Geräteart, für die sich noch keine einheitliche Bezeichnung einbürgerte. Es sind Mischpultverstärker mit eingebauten Klangregel - Netzwerken aber ohne Leistungs-Endstufen. Sie dienen zum Aussteuern eines oder mehrerer Endverstärker, und sie werden in der Hi-Fi-Anlagentechnik gewöhnlich "Steuergeräte" genannt.

Ein solches Gerät, daß aber vorwiegend dazu geschaffen wurde, transportable Mietanlagen schnell und sicher aufbauen zu können, bringt Telefunken unter der Bezeichnung "Reise-Mischpult Ela V 504" auf den Markt. Es ist als Koffer (Bild 1) ausgebildet, aber seine Bedienungsplatte nebst dem daran befindlichen Chassis läßt sich auch mit Vorteil in stationäre Regietische einbauen.

Die Schaltung

Vertieft man sich in die Gesamtschaltung'), so erkennt man, daß das Gerät vielfältige Aufgaben lösen kann. Vier von den fünf Mischkanälen, nämlich die Eingänge 1 bis 4, sind für den Anschluß von Tauchspulenoder Kondensatormikrofonen bestimmt. Die Mikrofondarbietungen können mit den Reglern P 1 bis P 4 miteinander gemischt werden. Zu diesem Zweck befindet sich zwischen den zugehörigen Eingangsübertragern Ü 1 bis U 4 und P 1 bis P 4 je ein Triodensystem der beiden Doppelröhren ECC 81 I und ECC 81 II. Hier erfolgt die erforderliche Mikrofon-Vorverstärkung. Jede Triode ist vom Ausgang (= heißes Ende des zugehörigen Mischreglers) über 10 MΩ auf den Gitterkreis gegengekoppelt, damit auch bei

1) Die Schaltung befindet sich auf der folgenden

überlauter Besprechung keine Übersteuerung erfolgen kann.

Der fünfte Mischregler P 5 wird als "Musikkanal" betrieben. Über den Eingangsumschalter S 1 lassen sich ein Rundfunkgerät (niederohmiger Zweitlautsprecher-Anschluß), ein Kristalltonabnehmer oder der Wiedergabeausgang eines Bandgerätes auf P 5 schalten. An der stark gezeichneten Sammelschiene laufen die gemischten Darbietungen zusammen, nachdem sie die Trennwiderstände von 500 bzw. 600 kΩ durchlaufen haben.

Das erste, über 1,6 und 1 M Ω gegengekoppelte System der Röhre ECC 81 III dient zur Summenverstärkung. Es sorgt dafür, daß das zweiseitig wirksame Klang-regelnetzwerk mit den Reglern H und T



Bild 1. Das Reise-Mischpult Ela V 504 bei abgenommenem Deckel (Telefunken)

Technische Daten

Eingänge 1 bis 4: 4× je 0,5 oder 3 mV/200 Ω Eingang 5 (umschaltbar): 2× je 250 mV/500 kΩ, ca. 1.5 V/5 kΩ

Ausgänge: 3× je 1 V/< 500 Ω symmetrisch, regelbar; ca. 30 V/< 30 kΩ unsymmetrisch

Klangregler: Höhen + 10 dB bis - 15 dB Tiefen + 12 dB bis - 12 dB

Netzanschluß: 110, 127, 220, 240 V~/40 Watt

Frequenzbereich: 30 bis 15 000 Hz

Klirrfaktor bei 1 V Ausgangsspannung: 60 Hz ≤ 0,7 %, 1 kHz ≤ 0,3 %, 10 kHz ≤ 0,7 %

Nutz- zu Fremdspannung: 1000:1 = 60 dB

genügend Eingangsspannung erhält. Das darauf folgende Triodensystem gleicht die Grunddämpfung des Netzwerkes wieder aus.

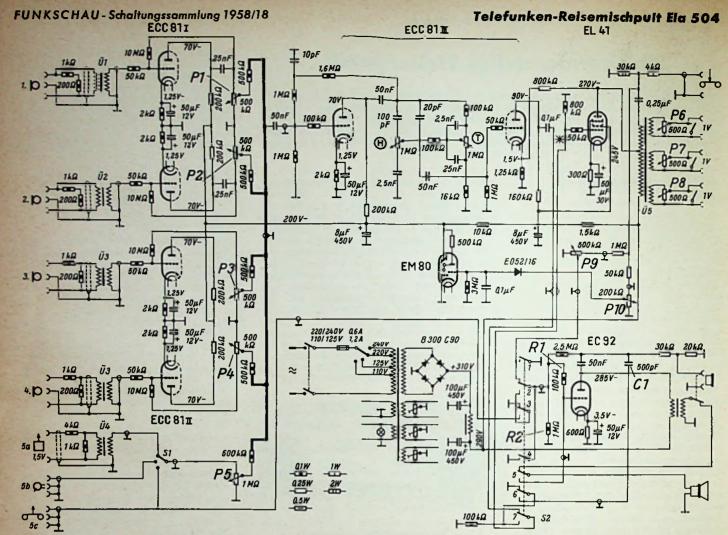
Um das Weiterverfolgen der Schaltung zu erleichtern, denke man sich den Ausgang von ECC 81 III mit dem Gitterkreis der Röhre EL 41 durchverbunden, und zwar dort, wo im Schaltbild zwischen den beiden nach unten geführten Leitungen ein Stern eingezeichnet ist. Die Endröhre ist zur Klirrfaktor-Verminderung über 800 kΩ auf die Katode des zweiten Systems der ECC 81 III gegengekoppelt. Sie arbeitet auf den Ausgangsübertrager U 5, der für die drei abgehenden 1-V-Steuerkanäle (zum Anschluß von Kraftverstärkern) getrennte Sekundarwicklungen besitzt. Jede Wicklung ist mit einem 500-Ω-Regler abgeschlossen (P 6 bis P8), so daß sich vom Reise-Mischpult aus sogar die Lautstärken der Unterverstärker fernregeln lassen. Auffallend sind die mit den Reglern gekoppelten Kurzschluß-

schalter. Sie sind in Nulistellung geschlossen und unterdrücken mit Sicherheit unerwünschtes Übersprechen.

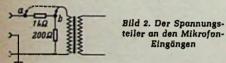
Betrachtet man die Primärwicklung von U 5 genauer, so ergibt sich, daß sie durch einen Wicklungsteil nach oben im Schaltbild "verlängert" ist. Dort zweigen hinter dem Trennkondensator 0,25 µF drei weitere Ausgangskanäle ab. Der eine führt rechts oben im Schaltbild zu einem Belastungswiderstand mit 30 k Ω und über 4 k Ω zum Aufsprechausgang (= Aufnahmeeingang) des angeschlossenen Bandgerätes. Nach unten verlaufen zwei weitere Stichleitungen zu den Reglern P 9 und P 10. Am letztgenannten läßt sich die Anzeigeempfindlichkeit des Aussteuerungskontrolle eingebauten Magischen Auges EM 80 für einen gewünschten Pegel einstellen.

P 9 regelt die Lautstärke des im Gerät enthaltenen Mithörlautsprechers, der von der Triode EC 92 gespeist wird. In dieser Mithörstufe sind verschiedene interessante Schaltungs-Kniffe versteckt. Sie verfügt z. B. über einen Steckanschluß für einen Kopfhörer, der beim Einführen des Steckers den Lautsprecher abschaltet. Die Verwendung eines Hörers kann nicht nur dann nötig sein, wenn in der Nähe des Mischpultes ein Mikrofon betrieben wird (Gefahr akustischer Rückkopplung), sondern auch in solchen Fällen, in denen der Mithörlautsprecher

häufig als Regiemikrofon in Tätigkeit zu treten hat. Um diese Betriebsfälle jedoch richtig zu überblicken, muß zunächst die Wirkungsweise von S2 erklärt werden, also jenes Schalters, der mit einem Kontaktsatz zwischen den mit einem Stern bezeichneten Leitungen liegt.


S 2 ist ein Kellogschalter mit drei Schaltstellungen. In der gezeichneten Ruhestellung befindet sich der Knebel in Mittellage (= Mithören Mischpult). In der einen Endstellung (= Mithören Tonband) werden die drei oberen Kontaktsätze 1 bis 3 umgeschaltet, während 4 bis 7 so stehen,

wie sie eingezeichnet sind1). Kontakt 1 legt zum Unterdrücken von Obersprecherscheinungen aus der laufenden Übertragung die vom Mithörregler P 9 kommende Leitung an Masse, 2 verbindet über 3 den Eingang der EC 92 mit dem Tonbandeingang. Bei nicht unterbrochener Übertragung läßt sich demnach ein Tonband abhören, etwa um den für eine spätere Einblendung benötigten richtigen Einsatzpunkt zu suchen (im Studiobetrieb "Bandvorlauf" genannt).


In der zweiten Endstellung von S 2 (= Kommandomikrofon) gehen die Kontakte 1 bis 3 wieder in die gezeichnete Stellung zurück und 4 bis 7 werden umgeschaltet. Jetzt arbeitet der eingebaute Mithörlautsprecher als Regiemikrofon, mit dem sich für besondere Durchsagen die angeschlossenen Kraftverstärker besprechen lassen2). Kontakt 4 erdet die hochohmige Eingangsschaltung, um die Mithörröhren-Gegenkopplung über R 1/R 2 außer Betrieb zu setzen und die Stufenverstärkung zu er-höhen. Kontakt 5 legt das Lautsprechersystem in Mikrofonschaltung an den Stufen-Eingang. Über 6 und 7 gelangt die in der EC 92 vorverstärkte Sprache zum Gitter der EL 41, wobei der kleine Wert von C 1

¹⁾ Diese Zeichnungsart von Kellogschalter-Kon-takten ist in der Fernmeldetechnik üblich und für diese Schalterart sehr zweckmäßig. Für den Funktechniker ist die Darstellungsweise etwas unge-

²⁾ Nicht zu verwechseln mit der im Rundfunk-Reportagebetrieb gebräuchlichen "Rücksprech-Schaltung", bei der ein am Eingang angeschlos-senes Tauchspulenmikrofon nach Art einer Wechselsprechanlage Durchsagen des Tontechnikers an den Sprecher wiedergibt und wie ein Lautsprecher arbeitet.

(= 500 pF) eine Tiefenabsenkung bewirkt und die Sprachverständlichkeit verbessert. In dieser Kommandoschaltung wird die laufende Übertragung nicht völlig unterbrochen, sondern nur sehr stark gedämpft, obwohl das aus dem Schaltbild gar nicht ohne weiteres hervorgeht. Die beiden zu S 2 führenden Leitungen, zwischen denen der schon mehrfach erwähnte Stern eingezeichnet ist,

verlaufen nämlich innerhalb eines gemeinsamen Abschirmmantels. Dort wird absichtlich infolge kapazitiven Übersprechens eine geringfügige Verkopplung herbeigeführt, die das leise Durchklingen der Übertragung bewirkt.

Eine kleine Besonderheit bei den vier Mikrofon-Eingängen sei noch nachgetragen: Bekanntlich fordern Tauchspulenmikrofone eine höhere Eingangsempfindlichkeit (0,5 mV) als Kondensatormikrofone (3 mV). Um die gleichen Eingänge für beide Mikrofontypen verwenden zu können, sind erstere mit einem umlötbaren Eingangs-Spannungsteiler nach Bild 2 ausgerüstet. Je nachdem, ob man den oberen Übertrager-Primäranschluß mit dem Punkt a oder b verlötet, erhält man eine hohe oder geringere Eingangsempfindlichkeit.

Das Reise - Mischpult, dessen Ein- und Ausgänge durchweg an Steckvorrichtungen liegen, vereinigt in einem rund 18,5 × 60 × 33,5 cm großen Koffer eine vollständige Regieeinrichtung, die den Aufbau "fliegender" Anlagen ganz beträchtlich vereinfacht. Fritz Kühne

Mischverstärker in Kleinstausführung

Handlich und übersichtlich bei kleinen Abmessungen ist der mit zwei Röhren EL 84 in der Endstufe arbeitende Mischverstärker der Firma Spieldiener aufgebaut (Bild 1). Die Vorderseite trägt fünf Bedienungsknöpfe, und zwar drei Misch- bzw. Lautstärkeregler sowie je einen Knopf für die Hoch- und Tieftonentzerrung.

Die Schaltung Bild 3 enthält insgesamt sechs Eingänge. Je zwei liegen parallel am Gitter eines Röhrensystems, und zwar sind folgende Gruppen gebildet:

Mikrofon 1 Mikrofon 2 Rundfunk
Tonband Gitarre Schallplatte

Durch Betätigen der zu den Gruppen gehörenden Lautstärkeregler können drei Quellen beliebig gemischt und überblendet werden. Die beiden Gruppen mit den Mikrofoneingängen enthalten je ein Triodensystem zur Vorverstärkung. Da die Eingangsamplituden klein sind, erfolgt die Lautstärke-Einstellung hinter den Röhren. Die Gitterleitungen konnten deshalb extrem kurz und störarm ausgebildet werden.

Die zugehörigen Lautstärkebzw. Mischregler sind über 25 nF an den Anodenkreis der Trioden angekoppelt. Zwei Längswiderstände von je 510 k Ω verhindern die gegenseitige Beeinflussung der am Gitter des dritten Triodensystems zusammengeführten Kanäle. Hier ist auch die dritte Eingangsgruppe (Rundfunk, Tonabnehmer) über 220 k Ω angeschaltet. Bei ihr steht genügend Eingangsspannung zur Verfügung, so daß auf Vorverstärkung verzichtet werden kann. Der Lautstärkeregler dieser Gruppe ist angezapft und

mit einem RC-Glied zur gehörrichtigen Lautstärkeregelung versehen.

Auf den Anodenkreis der zweiten Verstärkerstufe folgt ein kontinuierlich regelbarer Entzerrer. Der Zweig C1, R1, C2 enthält wegen des nur 150 pF großen Kondensators C1 vorwiegend hohe und mittlere Frequenzen. Steht der Schleifer von R1 links, dann gelangen diese Frequenzen voll an das Gittendes Röhrensystems Rö4 an. In Rechtsstellung des Schleifers werden die Höhen über C2 gegen Erde kurzgeschlossen und damit abgesenkt.

Im anderen Zweig R 2, C 3, C 4, R 4 fallen an den in Reihe liegenden Kapazitäten C 3 und C 4 vorwiegend tiefe und mittlere Frequenzen ab. Das parallel liegende Potentiemeter R 3 entnimmt davon bei links stehendem Schleifer die an C 4 = 25 nF liegenden Tiefen. In Rechtsstellung des Schleifers gelangen nur die über C 3 stehenden mittleren Fre-

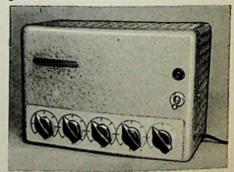


Bild 1. Mischverstärker der Firma Spieldiener, Nürnberg

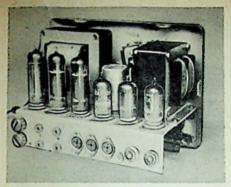


Bild 2. Innenansicht und Anschlußleiste

quenzen zur Endstufe (Baßabsenkung). Die beiden Schleifer der Klangregler sind über $R.5 = 100 k\Omega$ entkoppelt.

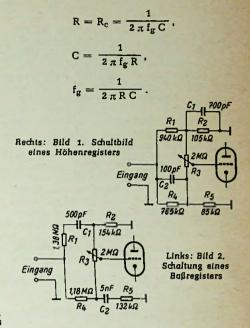
Die Spannung führt dann zur dritten Verstärkerstufe mit dem Röhrensystem Rö 4. Über den gemeinsamen unverblockten Katodenwiderstand R5 wird gleichzeitig die in Gitterbasisschaltung arbeitende Triode Rö 5 davon gesteuert, so daß die beiden Gegentaktspannungen für die Gitter der Endröhren entstehen, Vom Ausgangsübertrager führt eine frequenzunabhängige Gegenkopplung über den Spannungsteiler R7, R8 zurück auf das Gitter der Röhre Rö 4. Neben dem 100-V-Ausgang sind zwei niederohmige Anzapfungen für 6 Ω und 15 Ω auf der Sekundärseite des Ausgangsübertragers vorhanden.

Bild 2 zeigt den raumsparenden Innenaufbau. Die Achsen des Ausgangsübertragers und des Netztransformators sind um 90° verdreht, damit Brummeinstreuungen vermieden werden. An der rückwärtigen Chassiskante sitzen in einer Reihe die drei Vorstufenröhren, die beiden Endröhren und eine Netzgleichrichterröhre EZ 81, die hier an Stelle eines Selengleichrichters verwendet wird. Die Eingangsund Ausgangsanschlüsse befinden sich an der hinteren Chassisfläche, so daß, wie bereits erwähnt, kurze Verbindungen zu den Gittern der Eingangsröhren möglich sind.

Das sachlich gestaltete, grau lackierte Gehäuse ist über alles nur 21 × 14.5 × 11 cm groß und das Gerät wiegt nur rund 5 kg. Damit eignet es sich auch vorzüglich für schnell zu erstellende, transportable Anlagen, z. B. für Musikkapellen, wo es gut zum Umblenden vom Gitarre-Tonabnehmer auf das Sängermikrofon dienen kann. Preis 418 DM. Hersteller: Spieldiener Elektronik, Nürnberg.

So wie im letzten Jahrzehnt die Ansprüche gestiegen sind, die die Hörer an die Tonwiedergabe durch Lautsprecher stellen, haben sich die Konstrukteure zum Einbau von Regeleinrichtungen verstehen müssen. die die Beeinflussung des Frequenzganges von Nf-Verstärkern gestatten. In Anlehnung an entsprechende Einrichtungen bei Orgeln bezeichnet man die Knöpfe, mit denen der Frequenzgang dem jeweiligen Bedarf ange-

paßt werden kann, als Baß- und Höhenre-


gister.

In der Regel sind solche Register so ausgelegt, daß der Frequenzgang beiderseits der mittleren Tonfrequenz (800 Hz) bis zu gewissen Grenzen beliebig einreguliert werden kann. Mit den Einzelheiten der dabei auftauchenden Fragen hat sich F. Kühne in Nr. 85 der Rudio-Praktiker-Bücherei, "Hi-Fi-Schaltungs- und Baubuch", eingehend auseinandergesetzt. Anschauliche Beispiele für die Schaltung und Bemessung solcher Register geben Bild 1 für ein Höhenregister und Bild 2 für ein Baßregister. Die Eingangsspannung gelangt hierbei an frequenzabhängige Spannungsteiler. In der Schaltung Bild 1 bilden ein Tiefpaßfilter aus R₁, R₂ und C₁ und ein Hochpaß-filter aus R₄, R₅ und C₂ den Spannungsteiler, an dem mit Hilfe des Potentiometers Rg eine Spannung mit dem gewünschten Frequenzgang abgenommen werden kann. In der Schaltung Bild 2 bilden R_1 , R_2 und C_1 ein Hochpaßfilter und R_4 , R_5 und C_2 das Tiefpaßfilter.

In den Bildern 3 bis 6 sind die vier vorkommenden Arten von Filtern einzeln dargestellt. Die Anordnung in Bild 3 unterscheidet sich vom einfachen Hochpaßfilter (C und R2) dadurch, daß der Kondensator C durch den Widerstand R4 überbrückt ist. Bei tiefen Frequenzen ist der kapazitive Widerstand von C so groß, daß er nicht in Betracht zu ziehen ist; dann bilden R1 und R2 einen ohmschen Spannungsteiler, der fre-quenzunabhängig ist. Erst wenn mit steigender Frequenz der kapazitive Widerstand von C sinkt und in die Größenordnung von Ro gelangt, ändert sich der Frequenzgang der Ausgangsspannung insofern, als jetzt hohe Tonfrequenzen mit höherer Spannung an den Ausgang gelangen als zuvor. Diejenige Frequenz, bei der der kapazitive Wider-stand von C gleich dem Widerstand von R ist, bezeichnet man als Grenzfrequenz fg,

von der an hohe Tonfrequenzen mit wesentlich höherer Spannung an den Ausgang gelangen als zuvor. Aus diesem Ansatz lassen sich Tonfrequenzfilter berechnen:

Bemessung von Tonfrequenzfiltern

Zur Berechnung von Hoch- und Tiefpaßfiltern nach den Bildern 3 bis 8, wie sie in Bild 1 und 2 verwandt sind, dient als Ausgangspunkt die erforderliche Eingangsimpedanz, die in der Regel durch den erforderlichen Anodenkreiswiderstand einer voraufgehenden Röhre oder den Innenwiderstand einer anderen Tonfrequenzquelle gegeben ist. Sie beträgt im Anodenkreis einer voraufgehenden Röhre etwa 1 M Ω , so daß die Summe von R $_1$ und R $_2$ diesen Betrag ergeben muß. Da jeweils zwei solcher Filter parallelgeschaltet sind, beträgt die wirksame Impedanz 500 k Ω bei der mittleren Tonfrequenz 800 Hz.

Bild 3. Schaltung und Berechnungsunterlagen für ein Filter zur Höhenanhebung

$$C = \frac{A_n - A}{2 \pi f R_2 (A-1) (A_n - 1)}$$

$$R_2 = \frac{A_n - A}{2 \pi f C (A-1) (A_n - 1)}$$

Bild 4. Schaltung und Berechnungsunterlagen für ein Filter zur Dämpfung der Höhen

$$C = \frac{A_n - A}{2 \pi f R_2 \{A_n - 1\}}$$

$$R_2 = \frac{A_n - A}{2 \pi f C (A_n - 1)}$$

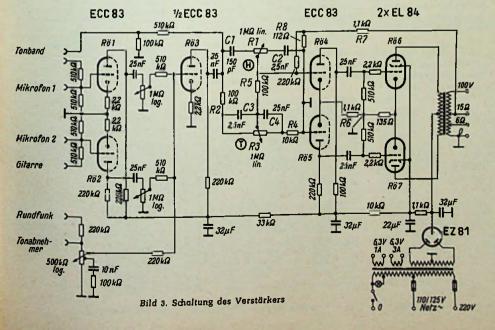
Bild 5. Schaltung und Berechnungsunterlagen für ein Filter zur Baßanhebung

$$C = \frac{A-1}{2 \pi f R_2 (A_n - A)}$$

$$R_2 = \frac{A-1}{2 \pi f C (A_n - A)}$$

Bild 6. Schaltung und Berechnungsunterlagen für ein Filter zur Dämpfung der Bässe

$$C = \frac{1}{2 \pi \int R_2 (A_n - A)}$$


$$R_2 = \frac{1}{2 \pi \int C (A_n - A)}$$

In der Praxis hat sich ergeben, daß eine Anhebung der Tonfrequenzen bzw. ihre Dämpfung etwa 6 dB je Oktave betragen soll, damit die erwünschte Wirkung erzielt wird. Unter dieser Voraussetzung sind

$$A = \frac{U_e}{U_a}, A_n = \frac{R_1 + R_2}{R_2},$$

$$R_1 = 9 R_{\Phi},$$

wobei mit Ue die Eingangsspannung und mit Ua die Ausgangsspannung der Filter bezeichnet ist; f ist diejenige Frequenz, deren Spannung am Ausgang konstant bleibt. Sie wurde weiter oben aus Gründen der praktischen Erfahrung mit 800 Hz empfohlen.

Die Durchrechnung eines Beispiels einer Höhenanhebung mit der Schaltung nach Bild 3 und der Mittelfrequenz von 1000 Hz ergibt für die Kapazität des Kondensators C einen Wert von 85,4 pF, für R2 erhält man 85 kΩ und für R₁ einen solchen von 765 kΩ. Diese Werte findet man im Hochpaßfilter R₄, R₅, C₂ der Schaltung nach Bild 1 wieder, wobei die Größe der Kapazität auf 100 pF aufgerundet ist, um einen handelsüblichen Kondensator verwenden zu können. Durch diese Aufrundung verschiebt sich die Mittelfrequenz von 1000 auf 1040 Hz.

Dr. A. Renardy

Literatur

Schwan, H. A.: RC Filter Tone Controls. Radio & TV News, 1958, März, Seite 61

Kühne, F.: Hi-Fi-Schaltungs- und Baubuch. Radio-Praktiker-Bücherei Nr. 85, Franzis-Verlag, München

Renardy, A.: RC-Hoch- und Tiefpaßfilter. FUNK-SCHAU, 1957, Heft 14, Seite 385

Rechteckgenerator für 10 Hz bis 180 kHz

Bei der wachsenden Bedeutung, die dem Rechteckgenerator zur Untersuchung Eigenschaften von Niederfrequenz- und Videoverstärkern beigemessen wird, dürfte das hier wiedergegebene Schaltbild eines solchen Generators interessieren, der in vier Bereichen saubere, rechteckförmig verlaufende Spannungen einstellbarer Höhe von 10 Hz bis 180 kHz hervorbringt.

Quelle der Rechteckspannung ist der mit der Röhre ECC 91 bestückte Multivibrator, bei dem das linke System in Anodenbasisschaltung, das rechte in Gitterbasisschaltung arbeitet. Beide Triodensysteme sind durch den gemeinsamen Katodenwiderstand R 6 miteinander gekoppelt. Die Frequenz der Rechteckspannung wird durch die Größe der Kapazität von einem der Kondensatoren C1 bis C4 und der Summe der Widerstände R4 und R5 bestimmt. Durch Einschalten eines der Kondensatoren C1 bis C4 wird der Frequenzbereich gewählt, innerhalb dessen an R5 die jeweils gewünschte Frequenz genau einreguliert werden kann.

Dem Multivibrator ist eine Verstärkerstufe mit der Lautsprecherröhre EL 90 nachgeschaltet. Durch je eine Verbindung an Anode und Katode kann hoch- und niederohmiger Ausgang gewählt werden, wie es die jeweilige Meßanordnung erfordert. Die Höhe der Ausgangsspannung wird mit dem Potentiometer R 7 eingestellt; sie beträgt bei 200 V Betriebsspannung maximal etwa 1 V von Spitze zu Spitze.

Mit Hilfe eines Oszillografen kann die genaue Form der Rechteckspannung untersucht und nötigenfalls variiert werden. Die Breite der positiven und negativen Impulse soll nach Möglichkeit gleich groß sein, weil sich dadurch einfaches Arbeiten ergibt. Diese Impulsbreite kann durch Änderung des Widerstandes R1 am Steuergitter des linken Triodensystems einreguliert werden. Es wird empfohlen, als Kondensatoren C1 bis C4 solche bester Qualität ohne Abschirmung zu verwenden, damit Streukapazität nicht zu unübersehbaren Verhältnissen führt. Aus diesem Grunde ist es auch zweckmäßig, die genannten Kondensatoren möglichst weit vom Chassis, am besten direkt an den Polen des Schalters zu montieren. -dv

Dresser, T. W.: Square-Wave Generator. Radio-Eletronics, 1958, Juni, Seite 92

Meßspannungsquelle für Oszillografen

Zur Messung von Spannungen während des Oszillografierens ist es zweckmäßig, ständig konstante Vergleichs-Spannungen zur Hand zu haben, die durch einfache Umschaltung jederzeit auf dem Schirm sichtbar gemacht werden können. Die Anordnung eines Gerätes solcher Art zeigt das Schaltbild.

Dem Netztransformator wird eine Wechselspannung entnommen und über R 4, C 3. R5 und R6 dem Spannungsteiler R7, R8, R 9 zugeführt. Die positiven und negativen Spitzen dieser Wechselspannung werden mit Hilfe der Gleichrichter 4 U 1 und 6 U 1 (International Rectifier) auf 105 V begrenzt. Zu dem Zweck sind die beiden Gleichrichter mit einer Gleichspannung von 105 V vorgespannt, die dem Gleichrichterteil entnommen und durch die Röhre OB 2 auf diesen Wert stabilisiert ist. Die Anordnung arbeitet also als Clipper.

Der fünfpolige Schalter gestattet zuerst einmal, die zu oszillografierende Spannung direkt vom Eingang auf den mit dem Ausgang verbundenen Oszillografen zu geben Soll während der Arbeit eine bekannte Meßspannung zum Zwecke des Vergleichs dargestellt werden, so liefern die restlichen vier Kontakte des Schalters solche Spannungen.

Die Höhe dieser Spannungen kann erstmalig an den Widerständen R 5 und R 6 einreguliert werden; sie beträgt maximal 105 V. Am Spannungsteiler R7, R8, R9 können genau definierte Bruchteile der eingestellten Höchstspannung abgegriffen werden, so daß es zweckmäßig ist, für den Spannungsteiler Widerstände enger Toleranz (kleiner als 1 %) zu wählen. Die einzustellende Höchstspannung wird mit einem Voltmeter hohen Innenwiderstandes, am besten mit einem Röhrenvoltmeter, eingemessen. -dv

Chernof, J.: An Inexpensive Scope Calibrator. Radio-Electronics, 1958, Juni. Seite 99

Elektronischer Zeitschalter

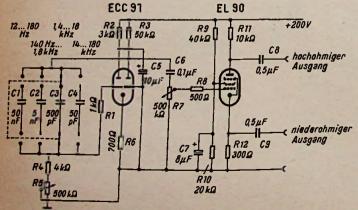
Zu dieser Arbeit in der FUNKSCHAU 1958. Heft 13, Seite 331 ist ergänzend zu bemerken, daß die eingestellte Schaltzeit von Speisespannungsschwankungen unabhängig

Wie man aus Bild 1 auf Seite 331 erkennt, ändern sich die Spannungen an Ro und Ra stets um den gleichen Faktor. Somit ist die Spannung E, die am Potentiometer P abgegriffen wird, immer ein Bruchteil ß der Spannung Uo an R2; β hängt nur von der Einstellung des Potentiometers P ab, nicht aber von Speisespannungsschwankungen.

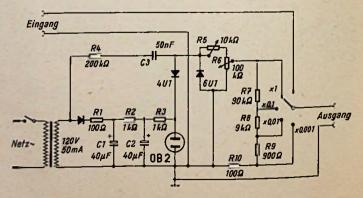
Setzt man $E = \beta \cdot U_0$ in Gleichung (3) auf Seite 332 ein, so erhält man für die Bestimmung der Schaltzeit to die Gleichung

$$(1 + \beta) e^{-\frac{t_0}{RC}} = \beta$$

Daraus, daß in dieser Gleichung die Spannungen nicht mehr auftreten, ergibt sich, daß die Schaltzeit to spannungsunabhangig ist.


Voraussetzung ist dabei allerdings, daß die Spannung nicht gerade während der Schaltzeit schwankt: denn während Un nur im Moment des Einschaltens von Bedeutung ist, hängt der weitere Ablauf der Kondensatorentladung nur noch von der Spannung E ab. Daher ist der Nutzen einer solchen "Stabilisierung" etwas eingeschränkt.

Diese Betrachtungen sowie die Rechnungen in der FUNKSCHAU Heft 13, Seite 332 wurden vorgenommen unter der Annahme, daß das Thyratron bei Durchlaufen der Gitterspannung Null löscht. Das ist aber nicht exakt richtig; vielmehr löscht das Thyratron in der Schaltung von Bild 1 bei Erreichen einer Gitterspannung von etwa -2 V. Für Überschlagsrechnungen ist das jedoch ohne H. Weichart wesentliche Bedeutung.


Sammelmappen und Einbanddecken

für die FUNKSCHAU 1958 befinden sich in Vorbereitung und werden zu den bekannten Prei-sen im Jenuar 1959 geliefert. Bitte geben Sie uns Ihre Wilnsche schon heute bekannt und be-stellen Sie die aufgeber der den der der stellen Sie die notwendige Anzahl schmaler (ohne Anzeigen- und Nachrichtenteil) oder breiter Einbanddecken (für die kompletten Hefte) bzw. Sammelmappen (mit Stäbchen-Mechanik, für 12 Hefte).

FRANZIS-VERLAG MÜNCHEN 37

Schaltung des Rechteckgenerators aus Multipibrator und Verstärkerstufe

Schaltung einer Meßspannungsquelle für Oszillografen

Voeschläge für die WERKSTATTPRAXIS

Lautsprecher des Fernsehgerätes als Zusatz-Lautsprecher beim Ton-Rundfunkempfang

Eine ausgezeichnete "Raumklangwirkung" läßt sich bekanntlich durch Aufstellen eines zusätzlichen Lautsprechers oder gar einer Lautsprecher-Kombination an einer anderen Zimmerwand bzw. -ecke erzielen.

Dem gleichzeitigen Besitzer von Fernsch- und Radiogerät eröffnet sich eine einfache Möglichkeit, in den Genuß dieser verbesserten Tonwiedergabe zu gelangen. Das Fernsehgerät wird meist im gleichen Wohnraum wie der Rundfunkempfänger betrieben. Es enthält mindestens einen Lautsprecher, oft sogar eine Lautsprecher-Kombination, die durch das wesentlich größere Gehäusevolumen eine beachtlich gute Baßwiedergabe liefert. Im einfachsten Fall genügt es, die – heute fast ausschließlich niederohmigen – Anschlüsse für Außenlautsprecher beider Geräte über ein zweiadriges Kabel miteinander zu verbinden.

Die direkte galvanische Verbindung mit dem meist in Allstromschaltung ausgelegten Fernsehempfänger könnte bei irrtümlich oder absichtlich gleichzeitigem Betrieb beider Apparate evtl. Bedenken erregen. Ein Trenntransformator oder die Verwendung zweier gleicher Ausgangstransformatoren, zwischen deren hochohmigen (Primär-) Wicklungen auch eine längere, dünne Verbindungsleitung keine merklichen Verluste bewirkt, bieten sich als brauchbare Lösung an. Da die Obertrager nicht durch Anodenstrom vormagnetisiert werden, bleibt die Beschneidung der niederfrequenten Bandbreite selbst bei kleinen Kernquerschnitten innerhalb tragbarer Grenzen. Bei unterschiedlicher Impedanz der Ausgänge ist dieser Weg unumgänglich. Soll beim Fernsehen die gerichtete Tonabstrahlung erhalten bleiben, so ist es zweckmäßig, ein Relais dazwischenzuschalten, dessen Wicklung hinter dem Netzschalter des Fernsehgerätes parallel gespeist wird. Wenn seine bei Erregung öffnenden Kontakte die Lautsprecher-Verbindungsleitung auftrennen, können beide Geräte unbedenklich parallel betrieben wer-I. Hamacher

Widney-Dorlec — eine neue Gehäusebaumethode

Ernsthafte Amateure und Radiopraktiker bedauern es stets, daß ihre mit viel Mühe und Sorgfalt angefertigten Geräte kein "industriemäßiges" Gehäuse erhalten können. Von der einschlägigen Industrie werden zwar vorzügliche Gehäuse angeboten, sie passen aber oft nicht in den Abmessungen. Die Selbstanfertigung scheitert an fehlendem Spezialwerkzeug und an der Tatsache, daß ein Rundfunkpraktiker in den seltensten Fällen gleichzeitig ein perfekter Klempner oder Blechschlosser ist.

Durch die Widney-Dorlec-Methode ist es nun möglich, Gehäuse in jeder Abmessung zu bauen, die allen Ansprüchen auf Stabilität und

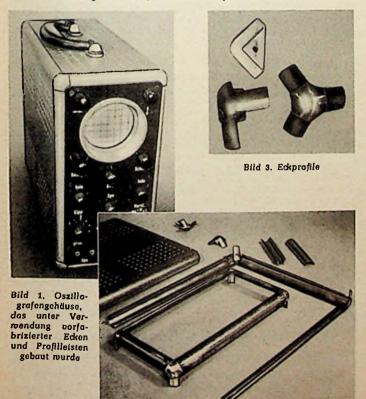


Bild 2. Rahmentelle aus Widney-Dorlec-Profilen

industriemäßiges Aussehen erfüllen (Bild 1). Außer Eisen- oder Aluminiumblech benötigt man zur Herstellung dieser Gehäuse nur noch die in Bild 2 und 3 gezeigten Profilleisten und Winkelecken. Das Sortiment von Widney-Dorlec!) ist so reichhaltig, daß man damit vom kleinsten Gehäuse bis zum größten Schrank alles aufbauen kann.

Wie Bild 4 zeigt, wurden — um die Anfertigung zu studieren — mehrere Gehäuse in dieser Bauweise angefertigt. Hierbei zeigte sich, daß bei der Arbeit einige Punkte zu beachten sind. Das von dem Hersteller vorgeschlagene Verfahren, die Profilleisten und Winkelecken mit den Gehäusewänden durch Punktschweißen zu verbinden,

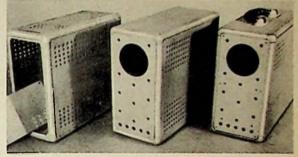


Bild 4. Weitere selbstgebaute Gehäusemodelle

hat sich leider nicht bewährt. Durch Unterschiede in der Blechstärke und des Materials war eine einwandfreie Verbindung der einzelnen Bauteile nicht möglich. So brannten teilweise die dünnen Profilleisten durch, ohne eine Verbindung mit den Blechwänden einzugehen. Außerdem verwarf sich die Verkleidungsfläche stark. Diese Bauart scheint also ohne spezielle Vorrichtungen nicht möglich zu sein. Das erste auf diese Weise hergestellte Gehäuse verzog sich so sehr, daß es nicht verwendet werden konnte. Folgende Methode führte jedoch zum Ziel:

Zuerst schneidet man auf einer Tafelblechschere die Gehäusebleche also die Außenwände zu. Dann werden die Ecken dieser Platten auf den vorgeschriebenen Radius gebracht, der sich aus den Profilecken Bild 3 ergibt. Um eine möglichst dichte Stoßkante zwischen den die Gehäusekanten bildenden Profilleisten und den Verkleidungsblechen zu erreichen, erwies es sich als notwendig, die Blechkanten zu brechen, also sauber zu entgraten und zu verrunden. Erst dann wird mit Hilfe der Winkelecken die erforderliche Länge der Profilleisten ermittelt. Dabei ist zu beachten, daß die Profilleisten genau rechtwinklig abgeschnitten werden, um eine schmale Stoßfuge und ein ebenes Gehäuse zu erzielen.

Nun kann man mit dem Zusammenbau beginnen. Die Profilleisten werden sehr exakt mit 2-mm-Nieten mit den Gehäusewänden vernietet. Zweckmäßig setzt man auf diese Art zunächst die vier Wände zusammen, die das Gehäuse bilden. Dann erst schiebt man die Profilecken in die Profilleisten und verbindet sie durch Punktschweißen miteinander. Lüftungslöcher müssen vor dem Zusammenbau gebohrt werden.

Hat man sauber und sorgfältig gearbeitet, dann kann das Gehäuse gespritzt und sofort verwendet werden.

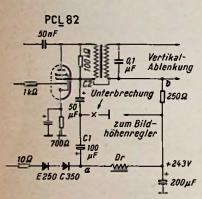
Wie Bild 4 zeigt, können auf diese Weise Geräte geschaffen werden, die sehr stabil und nicht von denen der Industrie zu unterscheiden sind. Rolf Spies

¹) Zu beziehen durch: R. H. Süß & Co. KG., Dexion-Stahlwinkel-Vertrieb Norddeutschland, Hamburg 11, Gröningerstr. 25 (Asia-Haus).

Reinigung unzugänglicher Wellenschalterkontakte

Immer wieder werden Geräte zur Reparatur gebracht, deren Wellenschalter bzw. Tastenaggregate nur nach Ausbau anderer Teile zugänglich sind. Über die hierbei auftretenden Schwierigkeiten ist verschiedentlich berichtet worden.

Zur Vermeidung des zeitraubenden Ausbaus hat sich ein Sprühverfahren sehr bewährt. Als Zerstäuber dient ein kleiner einfacher
Inhalierapparat, wie er in jeder Apotheke für etwa vier Mark zu
haben ist (Kassenausführung). Das kleine Gerät ist sehr handlich und
kann auch bequem zum Kunden mitgenommen werden. Der Apparat
wird über ein kurzes Stück Gummischlauch (noch besser: Polyaethylenschlauch) mit einem Stück Glasrohr verbunden, dessen eines Ende zu
einer spitzen Düse von wenigen Millimetern Durchmesser ausgezogen
wurde (Schlauch und Glasrohr sind ebenfalls in der Apotheke erhältlich). Die Spitze des Glasrohres soll etwas langgezogen sein, damit für ganz unzugängliche Stellen notfalls noch etwas Isolierschlauch
darübergeschoben werden kann.


Der Inhalator wird mit einem der üblichen Kontaktreinigungsmittel gefüllt. Wenn ganz empfindliche Teile in der Schußrichtung liegen, ist Tetrachlorkohlenstoff zu empfehlen, der in kurzer Zeit restlos verdunstet. Während des Einsprühens müssen die Kontakte energisch betätigt werden.

Die Methode ist bequem, zeitsparend und auch schonender als die meist in solchen Fällen angewandten mechanischen Reinigungs-Verfahren. Dr. Rainer-H. Böhm

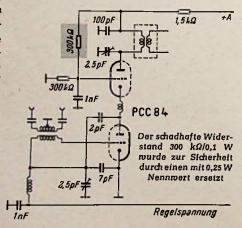
Fernseh-Service

Elektrolytkondensator im Netzteil stört die Bildgeometrie

Ein Fernsehgerät zeigte ein fehlerhaftes Bild, bei dem die untere Hälfte stark auseinandergezogen war. Als erstes wurde ein Fehler in der Linearitätseinstellung vermutet. Die Prüfung sämtlicher zugehöriger Kondensatoren und Widerstände sowie der Kopplungskondensatoren führte zu keinem Ergebnis. Alle Teile waren einwandfrei. Jedoch zeigte sich beim Messen der Spannungen, daß diese im gesamten Gerät zu niedrig waren, obwohl die Netzspannung stimmte. Das Auswechseln des Selengleichrichters brachte keine Besserung. Beim Überbrücken des Ladekondensators mit einem Prüf-Elektrolytkondensator stieg die Spannung sofort an, und auch das Bild verbesserte sich etwas. Hierbei sei bemerkt, daß sich der Ladekondensator C 1 und der Siebkondensator C 2 für die Bild-Endstufe in einem gemeinsamen Becher befanden (Bild). Eine genaue Untersuchung ergab, daß die Elektrolytflüssigkeit aus dem Becher heraus-

gelaufen und die Masseverbindung zwischen Elektrolytkondensator und Chassis vollkommen oxydiert war. Somit wirkte die Serienschaltung der Kapazitäten C 1 und C 2 als ein Kondensator, der zwischen den Punkten a und b lagund die Bildgeometrie zerstörte. Nach dem Auswechseln des Doppelkondensators arbeitete das Fernsehgerät wieder einwandfrei.

Dietrich Tiedemann

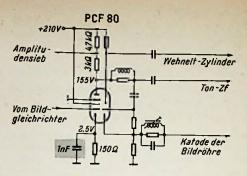

Die Unterbrechung bei x störte die Bildgeometrie

Flaves Bild, Ton zu leise durch Fehler in der Eingangs-Kaskode

Ein Fernsehempfänger zeigte ein slaues und kontrastarmes Bild. Der Ton war zwar vorhanden, aber zu leise. Da das Bild slau und kontrastarm und der Ton schwach waren, wurde der Fehler in den Zwischenfrequenzstufen oder im Hf-Teil vermutet. Eine Überprüfung der Zwischenfrequenzstufen ergab, daß diese in Ordnung waren. Die Regelspannung, es handelte sich um eine getastete Reglung.

war vorhanden. Die Meßergebnisse zeigten die richtigen Werte an.

Der Fehler konnte also nur noch im Kanalwähler mit den Röhren PCC 84 und PCF 82 gesucht werden. Das Gitter des zweiten Systems der PCC 84 (Bild) liegt über 1 nF an Masse und erhält über den Spannungsteiler $300 \text{ k}\Omega + 300 \text{ k}\Omega \text{ von}$ der Anodenleitung eine positive Spannung, um das Gitter auf das Katodenpotential zu bringen, weil sich durch



die galvanische Verbindung der Anode des ersten Systems mit der Katode des zweiten Systems an der Katode eine positive Spannung einstellt. Der 300-k Ω -Widerstand von der Anodenleitung war schadhaft, so daß der Spannungshaushalt nicht stimmte und die Röhre gesperrt war. Für den Widerstand war ein 0,1-W-Typ vorgesehen. Nach Ersatz des Widerstandes durch einen solchen mit 0,25 W Nennwert war das Gerät wieder in Ordnung.

Heinrich Siemsen

Synchronisation setzt kurzzeitig aus

Bei einem Fernsehgerät setzte die Bildsynchronisation nach einigen Minuten Betriebszeit in unregelmäßigen Abständen kurzzeitig aus. In gleicher Weise flatterte die Zeile ab und zu in der oberen Bildhälfte. Durch Röhrenwechsel ließ sich der Fehler nicht beseitigen. Das Gerät wurde mit in die Werkstatt genommen und lief dort

Der schadhafte Katodenkondensator in der Videostufe wirkte sich nur bei bestimmten Antennenspannungen aus

mehrere Tage emwandfrei. Weder die
Nachprüfung der Oszillogramme noch die
Suche nach einem
Wackelkontakt führten zu einem Ergebnis. Schließlich wurde
das Gerät zum Kunden zurükgebracht
und schon am nächsten Tage reklamierte
der Kunde wieder
den gleichen Fehler.

Ein erneuter Besuch beim Kunden während der Testbild-Sendezeit war

erfolglos, denn der Fehler zeigte sich nicht. Erst während des Programms konnte der Fehler wieder beobachtet werden. Nun fiel auch auf, daß je nach Bildinhalt ein Intercarrierbrummen eintrat. Der Fehler war also bereits vor dem Amplitudensieb zu suchen. Die Messung der Spannungen im Videoteil zeigte eine um etwa 100 V zu geringe Anodenspannung der ersten Videostufe. Als Ursache wurde der Katodenkondensator festgestellt, der einen Schluß aufwies (Bild). Die Videostufe wurde also in Abhängigkeit vom Bildinhalt übersteuert, so daß die Synchron-Impulse je nach Bildinhalt mehr oder weniger stark beschnitten wurden, während der Testbildsendung aber ausreichende Höhe aufwiesen.

Daß der Fehler sich in der Werkstatt nicht gezeigt hat, wird auf die verschieden große Antennenspannung zurückgeführt.

Horst Wiesner, Rundfunkmechanikermeister

Verrauschtes Bild erst nach zehn Minuten Einschaltzeit

Bei einem Fernsehempfänger war das Bild nach dem Einschalten zunächst für mehrere Minuten völlig einwandfrei, es wurde aber während der Betriebszeit immer stärker verrauscht. Nach 10 Minuten Pause zur Abkühlung war das Rauschen weg, trat aber mit zunehmender Erwärmung immer wieder in Erscheinung.

Da vermutet wurde, daß es sich um einen Röhrenfehler im Tuner handelt, wurden die Röhren PCC 84 und PCF 82 ausgewechselt, ohne dabei den Empfänger auszuschalten. Der Fehler blieb jedoch bestehen. Daraufhin wurden die Spannungen dieser Röhren direkt nach dem Einschalten (einwandfreies Bild) und nach Erwärmung (verrauscht) gemessen und nebeneinander notiert. Das Ergebnis war, daß die Regelspannung um 4 bis 10 V differierte. Probeweises Nachahmen dieser Verhältnisse durch eine Trockenbatterie mit Spannungsteiler führte zum gleichen Verhalten wie durch die längere Betriebszeit. Nun wurden alle Spannungen an der zur Regelspannungserzeugung dienenden Röhre PCC 85 gemessen, ohne daß ein Unterschied zwischen kaltem und betriebswarmem Gerät festgestellt wurde. Lediglich die Regelspannung der Zf-Röhren änderte sich etwas, d. h. sie wurde um ein bis zwei Volt niedriger. Die Überprüfung aller in Frage kommenden Teile mit dem Ohmmeter sowie das Parallelschalten einwandfreier Widerstände ergaben keinen Erfolg. Nur beim Verringern des 10-MΩ-Widerstandes (zur Verzögerung der Regelspannung des Tuners) auf 5 M Ω wurde das Bild nahezu richtig.

Waren alle Teile einwandfrei, so mußte irgendwo eine positive Gegenspannung auftreten, die bewirkte, daß die Regelspannung der Zf-Röhren bei Erwärmung negativer wurde. Dadurch trat im Zf-Teil offenbar eine größere Verstärkung ein, was eine höhere Gesamtregelspannung zur Folge haben mußte. Diese konnte sich am Tuner störenbemerkbar machen, während sie im Zf-Teil durch die positive Gegenspannung unwirksam blieb. Es lag also jetzt nichts näher als die Röhren des Zf-Teils bei eingeschaltetem Gerät und vergrießtem Bild gegen auf dem Röhrenprüfgerät vorgeheizte Ersatzröhren auszutauschen. Bei der dritten Stufe war bereits der Erfolg da, das Bild wurde sauber.

Nun war auch klar, weshalb der Spannungsabfall an den Entkopplungswiderständen nicht gemessen werden konnte. Bei der dritten Stufe beträgt dieser Wert nur 1 k Ω , während er bei Stufe 1 und 2 10 k Ω beträgt; dort hätte er bereits meßbar sein müssen. Im Röhrenprüfgerät (Bittorf & Funke) zeigte die schadhafte Röhre EF 80 keinen Fehler, der Isolationsfehler war also sehr hochohmig. W. Preuss

Welcher FUNKSCHAU-Leser

kann uns Heft 14/1950 der FUNKSCHAU liefern? Für dringende Archivzwecke kaufen wir einige Hefte zurück. Angebote an

FUNKSCHAU-Redaktion, München 37, Karlstr. 35

FUNKSCHAU-Leserdienst

Der Leserdienst steht unseren Abonnenten für technische Auskunfte zur Verfügung. Juristische und kaufmännische Ratschläge können nicht erteilt, Schaltungsontwärfe und Berechnungen nicht ausgeführt werden.

Wir bitten, für jede Frago ein eigenes Blatt zu uerwenden und Vertriebsund andere Angelegenheiten nicht in dem gleichen Schreiben zu behandeln. Doppeltes Briefporto (Inland 40 Pfg., Ausland zwei internationale Antwortsdieina) ist beizufügen. Anfragen, die dieser Bedingung nicht genügen, können nicht bearbeitet, telefonische Auskünfte nicht erteilt werden.

Anschrift für den Lesordienst: München 37, Karlstr. 35.

Abnormale Netzspannungs-Schwankungen gefährden Antennenverstärker-Röhren

Frage: Die Spannung meines Lichtnetzes schwankt zwischen 175 und 250 V Dies bewies eine längere Überwachung mit Hilfe eines Netzspannungs-Schreibers. Dodurch leiden die Rohren meines Fernseh-Antennenverstärkers, der Tag und Nacht eingeschaltet ist und demzufolge auch während der Nachtstunden, also zur Zeit der höchsten Überspannung, betrieben wird. Ich hoffe zwar, daß das E-Werk eines Tages den Übelstand abstellt, aber was kann ich in der Zwischenzeit tun, um nicht alle paar Monate einen neuen Röhrensatz kaufen zu müssen? K. D. in Bod Tölz

Antwort: In solchen Fällen bietet sich ein Ausweg - zumindest als Behelf an, der sich schon vielfach bei Rundfunkgeräten bewährt hat. Man ersetzt die im Antennenverstärker enthaltenen E-Röhren durch Paralleltypen der U-Reihe und heizt sie in Serienschaltung und unter Einbezug eines Eisenwasserstoffwiderstandes aus der Wicklung eines hierfür angefertigten Heiztransformators. Der EW-Widerstand hält die Stromschwankungen im Heizkreis in vernünftigen Grenzen, und sofern die Schaltelemente für die Anodenspannungsversorgung genügend überbemessen sind (das ist in Geräten für Dauerbetrieb gewöhnlich der Fall), hat man keine nachteiligen Folgen mehr zu befürchten. Selbstverständlich müssen innerhalb des Verstärkers die Heizanschlüsse bei den Röhrenfassungen im gleichen Sinn gegen Hochfrequenz verdrosselt werden wie bei Parallelheizung.

Lang-Yagis für das 2-m-Amateurband?

Frage: Der Aufsatz "Reichweitenprobleme und Superantennen" in FUNK-SCHAU 1958, Heft 6, Seite 131, hat mich sehr interessiert, weil ich mich bisher ziemlich erfolglos um entsprechende Literatur bemühte. Gern hätte ich zusätzlich über folgende Fragen Näheres in Erfahrung gebracht:

1. Lassen sich Lang-Yagis zu Gruppenstrahlern zusammenfassen, oder ist wenigstens eine 2-Etagen-Anordnung möglich?

2. Wie groß sind der horizontale Offnungsminkel und das Vor-/Rückverhältnis bei dem angeführten Beispiel? Wie verhält sich beides in Abhängigkeit von der Antennenlänge oder der Elementzahl (Bandbreite)? D. S. in Espelkamp-Mittenwald

Antwort: 1. In den USA werden mit gutem Erfolg Lang-Yagi-Antennengruppen für das 2-m-Band verwendet, z. B. zwei parallel angeordnete 13-Element-Antennen und darüber die gleiche Anordnung noch einmal (insgesamt 52 Elemente). Andere Ausführungen bestehen aus vier 17-Element-Antennen in gleicher Gruppierung.

2. Der horizontale Offnungswinkel eines 13-Element-Lang-Yagis liegt bei 20°. Bei abnehmender Frequenz wird er breiter, bei steigender schmaler. Etwa den gleichen Offnungswinkel haben 17-Element-Antennen. Das Vor-/Rückverhältnis liegt bei 15:1. Eine 17-Element-Antenne bat dagegen einen mehr als doppelt so großen V/R-Wert. Offnungswinkel, V R-Verhältnis, Bandbreite und Gewinn hängen voneinender ab und meist werden die Antennen nur auf einen oder zwei dieser Faktoren optimal ausgelegt.

"Industriemäßige" Glasskalen für Selbstbau-Empfänger

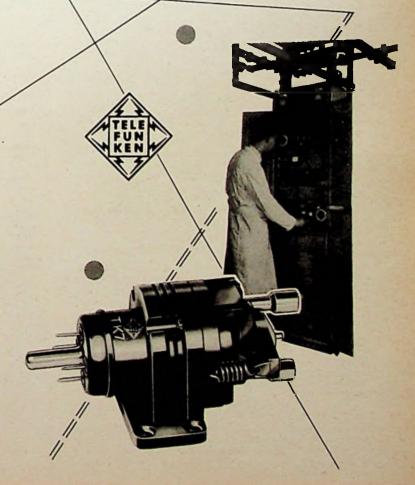
Frage: Ich möchte einen selbstgebauten Spezial-Empfänger mit einer Glasskala versehen, die industriemäßig aussieht. Wie kann man sich ein Einzel-stück mit genau stimmender Eichung selbst ansertigen? G. S. in Bielefeld

Antwort: Die Selbstanfertigung von Glasskalen ist zwar ein wenig mühsam, aber wenn man sorgfältig arbeitet, sieht das Endprodukt wie ein Industrieerzeugnis aus.

Zunächst legt man an Stelle der Skala in den Ausschnitt des Empfängers ein Stück Millimeterpapier ein, das genau so groß sein muß, wie die spätere Glasskala. Darauf bringt man unter Zuhilfenahme eines Meßsenders die wichtigsten Frequenz- oder Wellenlängen-Eichpunkte an. Anschlie-Bend werden die Vierecke eingezeichnet, die die einzelnen Sender bezeichnen und hinter denen später der Zeiger zu sehen sein wird. Bei dieser Arbeit leistet die FUNKSCHAU-Sendertabelle (Preis 2 DM) gute Dienste. Es empfiehlt sich, nur diejenigen Stationen einzuzeichnen, die am Aufstellungsort des Gerätes gut aufnehmbar sind, weil durch diese welse Beschränkung die Skala an Übersicht gewinnt.

Ist die Eichung beendet, läßt man die Papierskala von einem geübten Zeichner in größerem Maßstab (etwa 1:2 bis 1:3), aber maßgerecht. abzeichnen. Weil diese Vergrößerung anschließend im Fotoatelier wieder auf das ursprüngliche Maß verkleinert wird, verschwinden alle winzigen Ungenauigkeiten, die nun einmal beim Zeichnen kaum vermeidlich sind.

Dem Atelier gibt man zweckmäßig das Papier-Original [Millimeterpapier] zum Einstellen der Verkleinerung mit. Zur Aufnahme dient eine Fotoplatte entsprechender Größe (evtl. später vom Glaser zurechtschneiden lassen), auf der nach dem Entwickeln die Zeichnung erscheint. Die Beschriftung und die Vierecke sind also durchsichtig, alles übrige ist lichtundurchlässig. Durch Hinterkleben mit forbigem Tesafilm können abschließend noch die Elchungen für UKW z.B. grün, für Mittelwelle rot, usw. eingefärbt werden.


TELEFUNKEN

TK 7.

ein neues Innenkreis-Reflexklystron, durchstimmbar von 3,5 . . . 4,3 GHz. HF-Ausgangsleistung 2,7 W bei einer elektronischen Bandbreite von 20 MHz. Besonders geeignet für Senderendstufen und Modulationsstufen. Zur Verwendung in Richtfunkanlagen, die Fernsehprogramme oder Telefongespräche in 600 Kanälen übertragen.

TELEFUNKEN

ROHREN-VERTRIEB ULM - DONAU

Neuerungen

Leisesprecher, Noch immer sind file besondere Fälle Kopfhörer zweckmäßiger als Lautsprecher. Daß auf diesem Gebiet die Entwicklung weitergeht, zeigen die Erpees-Kopfbörer. Sie bestehen aus korrosionsbeständigem eloxiertem Aluminium und einem mit weichem Kunststoff überzogenen Stahlband-Kopfbügel. Die Membran ist verstellbar, der Innenwiderstand beträgt 4000 Ω, oder in Sonderfällen 100 Ω.

Für Sanatorien und Krankenhäuser

stehen Hörkissen mit eingebautem Kopfhörer, sog. Kissen-Leisesprecher zur Verfügung. Das Kissen besteht aus schmiegsamem Schaumgummi mit einer auswechselbaren Perlonhülle. Die Zuleitungsschnur, ein leidiges Übel bei Kopshörern, weil sie immer zum Verknoten und Abscheuern neigt, ist bei den Erpees-Hörern mit einem sehr widerstandsfähigen Zwillingskunststoff überzogen, und die Gabelverbindung ist äußerst solide ausgeführt. Ferner kann ein Lautstärkeregler geliefert werden, der besonders für Schwerhörigen-Anlagen gedacht ist (Robert Pfäffle KG, Schwenningen a. Neckar).

Schutzisolierter Lötkolben. Zum Löten an Verbindungen, die unter Spannung stehen (Fernmeldeanlagen, elektronische Steuerungen, gelegent-lich Rundfunkgeräte), können keine Lötkolben mit Schutzerdung benutzt werden, weil Kurzschlüsse dabei unvermeidlich sind. Kleinspannungskolben mit Schutzwandlern, die die er-

Röhren und Kristalloden

E 86 CF. In der roten Reihe der kommerziellen Valvo-Röhren erschien die Triode E 80 CF. Sie entspricht in Daten und Sockelschaltung der bekannten Verbundröhre ECF 80, erfüllt jedoch die Garantiebedingungen für Langlebensdauer-Röhren. Als Mehrzweckröhre ist der Pentodenteil geeignet für Mischstufen, Hf- und Nf-Verstärker, und der Triodenteil für Oszillatorstufen bis zu 300 MHz sowie für Multivibratoren und Sperrschwingerschaltungen. Die Röhre verträgt mechanische Schwingungen von 2,5 g bei 50 Hz in verschiedenen Richtungen sowie Stoßbeschleunigungen bis zu 500 g. Preis 15 DM (Valvo CmbH, Hamburg 1).

Kundendienstschriften

Die nachstehend aufgeführten Kundendienstschriften sind nicht von der FUNKSCHAU zu beziehen, sondern sie werden den Werkstätten von den Herstellerfirmen überlassen.

Graetz:

Reparaturdienst-Listen für Baroness 610, Komtess 611, Canzonetta 615, Comedia 616 (technische Daten, Reparaturhinweise, Ersatzteillisten, Schaltbilder, Lagepläne für gedruckte Leiterplatte und Abgleichanweisung).

Reparaturdienst-Listen für Polka 613, Musica 617, Grazioso 4617, Moderato 6617, Melodia M 618/619, Scerzo M 7618/7619. Fantasia 622. Cantilene 8622 Belcanto 9622 (technische Da-

forderliche Sicherheit gewährleisten, stehen jedoch nicht überall zur Verfügung. Der im Bild gezeigte 100-W-Kolben Ersa-Isotyp für normalen Netzanschluß bietet einen guten Ausweg. Seine verstärkte mit 3,5 kV geprüfte Schutzisolation, der wasserdicht im Gehäuse eingeschlossene Heizkörper, sowie der feuchtigkeitsunempfindliche und schlagfeste Kunststoffgriff sichern den erforderlichen Schutz für den Löter (Ernst Sachs, Wertheim/Main).

Funkentstörung im Kraftfahrzeug. Freiwillig vereinbarten die Hersteller ab 1. 7. 1958 alle Kraftfahrzeuge für das Bundesgebiet nach den Regeln VDE 0879 Teil 1 entstört zu liefern. Dies veranlaßte die Spezial-firma Beru auch eine neue 48seitige Broschüre über Entstörtechnik im Kraftfahrzeug herauszugeben. Nach allgemeinen Richtlinien wird das umfangreiche Fertigungsprogramm an Entstörsteckern, Kondensatoren und sonstigem Zubehör mit Bildern und technischen Daten aufgeführt. Für die verschiedenen deutschen Wagentypen werden spezielle Hinweise für die Entstörung gegeben. Zwei auf-klappbare Tabellen führen außerdem die Maßnahmen für die Entstörung in den verschiedenen Wellenbereichen auf (Beru, Ludwigsburg/Withg.).

ten, Ersatzteilliste, Skalenseilverlauf, Schaltung und Abgleichanweisung).

Grundig:

"Die silberne Mappe", Fernseh-Service 1958/59 (Schaltungen mit Meßdaten, Darstellungen der Druckschaltungsplatten, Lagepläne der Hilfsregler, Einstellhinweise, Abgleichanweisungen, UHf-Teil-Einbau).

Kundendienstschrift für Metz-Fernsehgeräte 1957/58 (Ausbauvorschrift, Funktionsbeschreibung, Abgleichan-weisung, Lagepläne der Chassis, technische Daten, Ersatzteillisten sowie Schaltbilder mit Spannungswerten und Impulsdiagrammen).

Erganzungsblätter für die Philips-Fernseh-Service-Mappe (Blockschaltbilder, Gesamtschaltbilder, Impulspläne und Spezialersatzteillisten für die Typen Leonardo S und Raffael S, ferner Funktionsbeschreibungen für Video-Verstärker, Regelautomatik und Synchronisationstrennstufe).

Service-Schrift für Raffael L (gilt außerdem für die Modelle Leonardo L, Kombinationstruhe und Mi-chelangelo und enthält Blockschaltung, Gesamtschaltung, Impulspläne, Spulen- u. Transformatoranschlüsse. Servicecinstellungen, Lagepläne, Abgleichanleitung, Funktionsbeschreibung, Liste der Spezial-Ersatzteile).

Schaltbilder W9-Serie (für neun Geräte der neuen Saison liegen vor, Schaltung mit Abgleichvorschrift und teilweise mit Plänen der geätzten Schaltung).

Service-Schriften Schaulnsland S 805 und T 804/805 (Schaltung, Serviceeinstellung und Abgleichanweisung).

Service-Anleitung für die Fernsehempfänger Schauinsland T 704, T 705, S 705 und S 705 Deluxe (Schaltbilder, Lagepläne, Pläne für Spannungen, Oszillogramme und Abgleichpunkte, Funktionsbeschreibungen, Abgleichanleitungen, Ersatzteillisten, Bestellkarten für den Einzelteil-Schnelldienst und Eilaufkleber zum Einschicken von defekten Einzelteilen).

Telefunken:

Stereo-Truhe S 8 (Prinzipschaltbild Strom- und Spannungswerten, Blockschaltung der Gesamttruhe, Ab-gleichschema, Einmeßvorschrift für den Entzerrerverstärker).

Plattenmechsler 1004 - Funktionsbeschreibung und Justieranweisung (Technische Angaben, Anschluß und Einbau, Bedienung und Arbeitsweise, Funktionsbeschreibung der einzelnen Organe mit ausführlichen Bildbeispielen, Justiervorschrift, Schaltbild).

Hauszeitschriften

Die nachstehend aufgeführten Hauszeitschriften sind nicht von der FUNKSCHAU zu beziehen, sondern sie werden den Interessenten von den angegebenen Firmen überlassen.

BASF-Mitteilungen für alle Tonbandfreunde, Heft 18. Einleitend wird in dieser 18seltigen Nummer auf die am 1. Juli in Kraft getretene Verbilligung der LGS-Bänder hingewiesen, die durchschnittlich 12 bis 15 % beträgt. Für den Techniker dürfte der Kurzbeitrag "Hf-Vormagnetisierung" von besonderem Interesse sein (BASF, Badische Anilin- & Soda-Fabrik AG, Ludwigshafen/Rh.).

Cerberus-Elektronik, Heft 8. Diese 4seitige Sondernummer befaßt sich ausschließlich mit Signalglimmlampen and bespricht in wohltuend sachlicher deren Eigenschaften Schaltungen sowie das erforderliche Zubehör Cerberus GmbH, Bad Ragaz/ Schweiz).

Körting-Echo, Heft 1. Zu den zahlreichen Hauszeitschriften der Geräte-Hersteller hat sich jetzt das Körting-Echo gesellt. Es will Mittler zwischen den vielen alten Freunden der Firma und dem Chiemgauer Werk sein. Die vorliegende 12 Seiten starke erste Nummer läßt den Kurs erkennen, den die Schrift pflegen will. Nach einem einleitenden "Verkaufsge-spräch" folgen eine Erklärung der Körting-Expanderschaltung und Hinweise des technischen Kundendienstes. Für den Händler sind eine Aufstellung der Werksvertretungen und der verfügbaren Matern für Werbezwecke bestimmt. Aktuelle Meldun-gen aus dem Werk und einige wit-Zeichnungen bilden den Beschluß. Das Körting-Echo wird 6 bis 8mal jährlich erscheinen (Körting Ro-dio Werke GmbH, Grassau/Chiem-

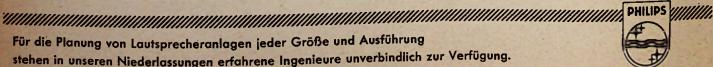
Messen ... Reparieren, Heft 4. Auch diese Nummer (8 Seiten) macht ihrem Untertitel "Ein Helfer für Ihre Ser-vice-Werkstatt" wieder alle Ehre. Zunächst wird die richtige Anwendung von Oszillograf und Röhrenvoltmeter bei der Reparatur von Fernsehgeräten besprochen. Dann folgen Ab-gleichhinweise für 12-Kanal-Kasko-den-Trommelwähler und ein weiterer Artikel befaßt sich mit dem UKW-Zf-Abgleich von Rundfunkempfängern. Bemerkenswerte Werkstattwinke, die wirklich aus der Praxis stammen, beschließen das interessante (Deutsche Philips GmbH, Hamburg).

Saba-Reporter, Heft 15. Auf 52 Seiten und in äußerst geschmackvoller Aufmachung macht diese Nummer mit dem gesamten Rundfunk-, Fernsch- und Phono-Neuheitenprogramm bekannt. Besondere Aufsätze be-handeln die Fernsteuerung des Sabafon-Tonbandgerätes, die Abstimmautomatik der Spitzen - Rundfunkempfänger und die Vollautomatik der neuen Fernsehgeräte (Saba-Werke, Villingen/Schwarzwald).

Tekade-Mittellungen, Nr. 7. Der Hauptaufsatz dieses Heftes (8 Seiten) regt sehr zum Nachdenken an und es ist schade, daß er nicht einem viel größeren Leserkreis zugänglich ist. Sein Titel lautet "Hochfrequenter Drahtfunk – heute noch aktuell?" Weitere Beiträge befassen sich mit der Transistortechnik, dem Kupferoxydul-Gleichrichter und mit dem neuen Tekade-Universal-Röhrenvoltmeter (Tekade, Nürnberg).

Der Weide-Funk, Heste 1 und 2. Die Hamburger Werks-Vertretung der Firma Grundig hat in diesem Jahr das Erscheinen ihrer Hauszeitschrift wieder aufgenommen. Die beiden ersten Nummern (je 12 Seiten) bringen in bunter Folge Hinweise für den Kundendienst, sie machen mit neuen Grundig-Erzeugnissen bekannt und vermitteln interessante Nachrichten aus der Branche (Woide und Co. Hamburg 1).

Geschäftliche Mitteilungen


Die Firma Dynacord Elektronik und Gerätebau ist umgezogen nach Straubing, Siemensstr. 2, Schließfach 68, Telefon: 3538 und 3539, Fernschreiber: 6 5520, Telegramm-Adresso:

Dynacord Straubing.
Falls sich durch den Umzug vorübergehend Stockungen in den Lieferungen ergeben, werden die Abnehmer um Verständnis gebeten.

Die Firma Schaub-Lorenz teilt uns mit, daß der Stereo-Zusatzverstärker für die stereosicheren Schaub-Lorenz-Truhen noch in diesem Monat auf den Markt kommt. Sein Preis wird 48 DM betragen.

WENN ELA: DANN ...nimm doch PHILIPS

Für die Planung von Lautsprecheranlagen jeder Größe und Ausführung stehen in unseren Niederlassungen erfahrene Ingenieure unverbindlich zur Verfügung.

Programmheft der "Deutschen Welle"

Der Kurzwellen-Überseerundfunk der bundesdeutschen Rundfunkanstalten Doutsche Welle* mit Richtstrahlern bei Jülich gibt alle zwei Monate ein kleines Programmhest heraus. Es illustriert einige der wichtigsten Sendungen der kommenden zwei Monate und nennt für diesen Zeitraum die gültigen Frequenzen und Wellenlängen. Wichtig erscheinen uns auch die hier von Zeit zu Zeit veröffentlichten Tips für besseren Kurzwellenempfang. Beispielsweise wird in der Ausgabe für Oktober-November 1958 die Herabestzung von örtlichen elektrischen Störungen durch Maßnahmen an der Empfangsantenne und am Kurzwellenempfänger in einer leicht faßlichen Form behandelt.

Die gültigen Frequenzen und die Sendezeiten für die fünf aus Jülich abgestrahlten Überseeprogramme der "Deutschen Welle" veröffentlichten wir zuletzt in FUNKSCHAU 1956, Heft 20, vorderer Nachrichtenteil.

25 Jahre Rohde & Schwarz

Anfang November 1958 feierte Rohde & Schwarz in München sein 25jähriges Bestehen. Das Unternehmen wurde 1933 von den beiden jungen Assistenten der Universität Jena, Dr. Rohde und Dr. Schwarz, in der klaren Erkenntnis gegründet, daß die Hochfrequenzmeßtechnik aus dem Stadlum des physikalischen Apparates zum ingenieurmäßig durchentwickelten Gerät drängte. Die Richtigkeit des Gedankens bestätigte sich bald: Schon 1934 kamen die ersten Serienausführungen auf den Markt, aus kleinsten Anfängen entwickelte sich in schnellem Wachsen ein Betrieb mit Weltgeltung, der entscheidenden Anteil an der Gestaltung der heutigen Hochfrequenzmeßtechnik genommen hat und weiterkin mit seinen modernen Konzepten in vorderster Linie steht. Das Programm umfaßt heute über 400 Typen von Meßgeräten, die in Laboratorien, Prüffeldern und im Betriebsdienst verwendet werden. Nach dem Kriege wurde die Fertigung auch auf Betriebsgeräte der Nachrichtentechnik ausgedehnt. Die dabei entstandenen Sender, Empfänger, Antennen und Peiler für Kurzwelle, VHf-Rundfunk, Fernsehen, Richtfunk und Flugsicherung wurden entscheidend durch die Erfahrungen beim Bau von Meßgeräten beeinflußt, geben diesen aber auch ihrerseits immer wieder neue Impulse.

Das Unternehmen, auch jetzt noch unter der persönlichen Leitung der beiden Gründer stehend, hat gegenwärtig etwa 2000 Mitarbeiter und ist damit die größte europäische Herstellungsstätte für Hochfrequenzmeßgeräte.

Die Firma Wolfgang Bogen GmbH, Fabrikation hochwertiger Magnetköpfe, konnte am 24. Oktober in Berlin-Zehlendorf, Potsdamer Str. 23, das Richtfest des neu errichteten Fabrikations- und Bürogebäudes feiern. In den neu entstehenden etwa 2000 Kubikmeter umfassenden Räumen wird die Präsisonsfertigung der in der Branche bestens bekannten Bogen-Köpfe für alle Anwendungsgebiete der magnetischen Aufzeichnungstechnik mit etwa 100 Arbeitnehmern der ständig steigenden Nachfrage nachkommen können.

Wolfgang Bogen begann vor acht Jahren als Ein-Mann-Betrieb mit der Fertigung von Magnettonköpfen für Tonbandgeräte. Mit eiserner Energie und dem selbst gesteckten Ziel, den Umsatz jährlich zu verdoppeln, gelang es der Firma, einen bedeutsamen Marktanteil – selbst auf dem Exportmarkt in

dieser Branche - zu erreichen.

Persönliches

Generaldirektor Bruno Piper, Vorsitzer des Vorstandes der Loewe-Opta AG, bekam am 21. Oktober durch Ministerpräsident Dr. Seidel in München das ihm vom Bundespräsidenten verliehene Große Verdienstkreuz des Verdienstordens der Bundesrepublik Deutschland überreicht (vgl. "Persönliches" in Heft 21/1958).

Prof. Dr. Dr.-Ing. e. h. Ferdinand Mayer, bisher stellvertretendes Vorstandsmitglied der Siemens & Halske AG, wurde zum ordentlichen Vorstandsmitglied ernannt.

Bernhard F. Kane, O.B.E., M.I.E.E. übernahm die Verkaufs- und Beratungsvertretung der Marconl's Wireless Telegraph Co., Chelmsford/England, für die Länder Bundesrepublik Deutschland, DDR, Folen, Tschechoslowakel, Usterreich, Ungarn, Bulgarien und Rumänien mit Sitz in Wien. B. F. Kane erhielt seine Ausbildung in England und Deutschland (hier bei der AEG) und stand Jahre hindurch im Dienste der indischen und burmesischen Fernmeldeverwaltungen, ehe er 1950 zu Marconi ging.

In Hamburg verstarb unerwartet im 57. Lebensjahr der Gründungsobermeister der Innung für Radio- und Fernsehtechnik, Otto Marquardt.

Ebenfalls in seinem 57. Lebensjahr verstarb Nobelpreisträger Dr. Ernest Lawrence, Chef des Strahlungsforschungslabor der Universität von Kalifornien. Er galt als der Erfinder des Zyklotrons; die erste Versuchsanlage baute er in den frühen 30er Jahren in Berkeley/Kalifornien.

Veranstaltungen und Termine

Vorschau auf 1959

23. Januar: Essen ~ Vortragsveranstaltung über industrielles Fernsehen, mit Anwendungsbeispielen (Haus der Technik)

29. bis 30. Januar: London - Convention "Weitübertragung mit Wellenleitern" (Veranstalter: Radio & Telecommunications

Section of the I.E.E.)

3. bis 5. März: London - Jahresausstellung der Television Society

26. April bis 5. Mai: Hannover — Deutsche Industrie-Messe

25. bis 29. Mai: London - Halbleitertagung

14. bis 23. August: Frankfurt a. M. — Rundfunk-, Fernseh- und Phono-Ausstellung, evtl. mit internationaler Beteiligung

Stellung, evel. title internationaler beteingung

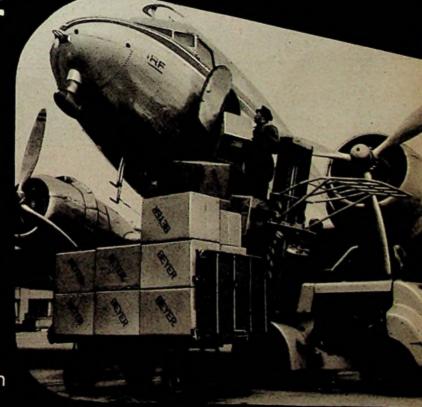
1, bis 8. Sept.: Stuttgart - Internationaler akustischer Kongreß mit

Ausstellung

12. bis 27. Scpt.: Berlin - Deutsche Industrie-Ausstellung 1959

17. bis 25. Okt.: Düsseldorf - Internationale Fachausstellung Kunst-

stoffe 59"


BEYER

MIKROFONE

DRUCKKAMMERLAUTSPRECHER

DYN. HÖRER

Versand nach
allen Kontinenten

BEYER - Elektrotechnische Fabrik - Heilbronn/Neckar

KSL Regel-Trenn-Transformator

für Werkstatt und Kundendienst, Leistung: 300 VA, Pr. 110/125/150/220/240 V durch Schalter an d. Frontplatte umstellbar, Sek. 180-260 V in 15 Stufen regelbar mit Glimmlampe und Sicherung. Dieser Transformator schaltet beim Regelvorgang nicht ab, daher keine

Beschädigung d. Fernsehgerätes.

Mengenrabatt auf An-

Type RG 3 Preis netto DM 138.— Type RG 4/220 netto DM 108.— (primär nur 220 V)

K. F. SCHWARZ Transformatorenfabrik

Ludwigshafen a. Rh., Bruchwiesenstr. 25, Tel. 67446

AKUSTIK

Verstärker-Koffer Nr. 2586 V, DM 176.-

Phono-Koffer eb DM 79.50

Phono-Chassis ab DM 58.50

für Kleinverstärker, DM 75 .- und Phono-Bar, DM 285.- bitten wir Prospekte anzu-

KURT SCHRØDER - BERLIN-NEUKØLLN

Finowstraße 27

Walter Arlt's billige Sortimente für die Werkstatt

50 Stück 100 Stück

Kleinteile (Formtelle) Schrauben, Muttern, Unterlegscheiben, Löt-

ösen usw. DM 100 g ca. 1000 Teile 0.50 250 g ca. 2500 Teile 0.95 500 g ca. 5000 Teile 1.50

Isolierteile, Pertinax u. Keramisch: Streifen, Scheiben, Rohre, Durch-

Rohrnieten in gängigen

Schraubensortimento

DM 2 mit Mutt. 0.75 30 M 2,6 mit Mutt. 0.75 30 M 3,5 mit Mutt. 0.75 30 M 3,5 mit Mutt. 0.95 30 M 4 mit Mutt. 1.25 30 M 5 mit Mutt. 1.50

Druck-, Zug- u. a. Fed. kl. Sortiment 0.30 DM gr. Sortiment 0.50 DM

10 Stück 4.90 DM 25 Stück 9.90 DM Lötösen gut sortlert 50 Stück 0.45 DM

Isolierter Schaltdraht

Isolierte Schaltlitze 25 m Sort. 0.95 DM

25 m Sort. 1.75 Lies 50 m Sort. 1.75 Lies Nietlötösen bunt sort. 0.75 DM

250 Stück 1.95 DM Unterleg- und Bellege-

Skalenseilfedern

Potentiometer

doppelt und

Becherblocks meist Klasse 1 0,07 – 2 μF 10 Stück 25 Stück

25 Stilde

100 Stück 250 Stück

25 m Sort.

50 m Sort

schelben 100 Stück 250 Stick

führungen usw. 100 g Beutel 250 g Beutel 500 g Beutel

Größen

100 Stück 250 Stück

11.95 DM

0.75 DM 1.75 DM 3.75 DM

0.50 DM 1.- DM

0.30 DM 0.50 DM

einfach, Tandem

4.90 DM 9.90 DM

0.80 DM 1.75 DM

0.95 DM 1.75 DM

0.95 DM

DM

Unser Großeinkauf in Resthe-Unser Großeinkauf in Resthe-ständen gestattet es uns, die planmäßig zusammengestellten Sortimente zu unwahrschein-lich günstigen Preisen zusam-menzustellen, die wir unseren Kunden zu einem geringen Bruchteil des Wertes abgeben.

Keramische Kondensatoren

interessant gut sortlert 50 Stück 3.- DM 100 Stück 5.50 DM 250 Stück 10.90 DM Blockkondensatoren u. a. Sikatrop, Glim-mer Calit und Roll-Kondensatoren

50 Stück 1.90 DM 3.50 DM 6.80 DM 250 Stilck Schicht-Hochohm-Widerstände 0,25- 2 W

orakt. gängig sortiert 50 Stück 2,95 DM 00 Stück 4.95 DM prakt. 100 Stück 250 Stück Drahtwiderstände z. T. mit Abgriffschellen für alle Fälle sortiert 4 bis 40 Watt

50 Stück 100 Stück 3.95 DM 250 Stück 11.50 DM Keramische Rohr- und Lufttrimmer sortiert

25 Stück 50 Stück 1.70 DM 2.90 DM 100 Stück 4.90 DM Skalenbirnen gute Auswahl

50 Stilde

16.50 DM 250 Stück Glassicherungen 1.90 DM 100 Stick 3.60 DM 7.90 DM

8.50 DM

Skalenknönfe schöne Knöpfe sortiert 50 Stück 2.95 DM 2.95 DM 4.95 DM 100 Stilde 250 Stück 11.95 DM Hochfrequenz-Eisen-schrauben sortiert

1.95 DM 25 Stück 50 Stück 100 Stück 3.25 DM 4.95 DM Hochfrequenz-eisenkörper bewickelt und unbewickelt 10 Stück 0.95 DM

25 Stück 1.95 DM 50 Stück 3.25 DM UKW-, KW-, MW- und Langwellenspulen, Drosseln für Versuche

25 Stück 3.95 DM Tuchelsteckerleiste T 2020 -111f441E

16pol., nach DIN 41 621, mit unverwechselbarer 16pol. Buchsenleiste T 2021 aus Restposten H 388

kompl. DM 4.10 Satz DM 35.- 100 Satz DM 300.-

Hochspannungsblocks 0,1 MF, 2000 Volt Arbeitsspan-nung, 6000 Volt Prüfspannung, nung, 6000 Volt Prütspannung, Kl. 1, Sonderposten, etwa 10 000 Stück. Hockwertige, feinste Ware (10 Stück 12.– DM, 100 Stück 105.– DM) DM 1.50 Universal-Meßinstrument TS 85 für Gleich- und Wechselstrom

Wechselstrom

Ein Instrument für Werkstatt und Labor.

Ein Spezialmeßger. m. Umschalter u. einer Empfindlichkeit von 1000 Ohm per Volt für = und ~ Null-Korrektur. Als Widerstandsmesser mit 2 eingebauten Batterien bis 1 MΩ zu verwenden. Meßbereiche:

Gleichstrom 10 50/250/500/1000 Volt. Wechselstrom 10 50/250/500/1000 Volt. Gleichstrom 0 bis 0.5 mA/25 mA/500 mA. Für Dezibelmessungen: -20 db bis + 22 db und +20 db bis + 36 db.

Meßgenauigkeit: bei = ± 3%: bei

 $\sim \pm 4$ %. Gewicht mit Batterien und Schnüre 395 g.

Maße 92 × 132 × 42 mm. TS 58 komplett mit 2 Batterien und Prüfschnüre DM 48.75

Arlt Radio Elektronik G.m.b.H. Düsseldorf Friedrichstraße 61a (Versandabteilung)

Tel. 80001 · Postscheck: Essen 373 36 Herzogstraße 7 · Telefon 1 73 59

Arit Radio Elektronik Walter Arit G. m. b. H. Berlin-Neukölin (Westsektor) · Karl-Marx-Straße 27 (Vers.-Abt.) · Tel. 801104 · Postsch.: Berl.-W. 19727

Berlin-Charlottenburg (Westsektor) Kaiser-Friedrich-Straße 18 · Telefon 34 66 04

METALLPAPIER (MP) -KONDENSATOREN

Mehrlagig

in allen Spannungsreihen

Kapazitätsstabil

bei jeder Betriebsart

Isolationssicher

unter allen Betriebsbedingungen

HYDRA-MP-Kondensatoren sind neuerdings in allen Spannungsreihen bei unveränderten Abmessungen mehrlagig aufgebaut und darüber hinaus äußerst verlustarm, da sie mit einem Tränkmittel niedriger DK imprägniert sind.

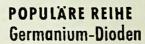
HYDRA-MP-Kondensatoren werden hergestellt nach DIN 41196/41197 im zylindrischen Gehäuse und im rechteckigen Gehäuse.

> HYDRAWERK AKTIENGESELLSCHAFT BERLIN N 20

PHILIPS Fachbücher

FÜR IHRE BIBLIOTHEK

BUCHREIHE »ELEKTRONEN-RÖHREN« Band III B


Daten und Schaltungen moderner Empfänger- und Kraftverstärkerröhren

(Ergänzungsband III) von N. S. MARKUS und J. VINK (56)

Batterierähren in Miniaturausführung: DK92, DL 94, DM 70, DM 71 - 2-Emplangerschaltungen - Röhren für FM/AM-Empfänger: EABC 80, EC 92, ECH 81, EF 85, EZ 80, UABC 80, UC 92, UCH 81, UF 85 - 2-Empfänger-Schaltungen - Röhren für das Dezimetergebiet: DC 70, EC 80, EC 81,

EC 55 — Beschreibung von 4 verschiedenen Schaltungen und mehr. Entwicklungsjahre 1951/54

(gr. - 8°) 260 Seiten, 290 Abbildungen Gln. DM 16,50

von Dr. S. D. BOON

mit 23 verschiedenen Anwendungsbeispielen, v.a.: Gleichrichter für niederahmige und hochohmige Belastung, Meßinstrumente, Video-Demodulation und automatische Verstärkungs-Regelung in einem Fernseh-Empfänger, Dynamischer Begrenzer für FM-Empfänger, Impulsformer, Radiowecker, Dioden-Empfänger ohne Antenne, Demodulation und AYR in Rundfunk-Emp fängern, Zeitschafter mit Germanium-

Diode, Germanium-Dioden in Relaisschaltungen und vieles mehr. Kartoniert DM 5,50 (8°) 79 Seiten, 58 Abbildungen

SCHALTUNGEN

Röhren für Batterie-Empfänger

von E. RODENHUIS mit Beiträgen zum UKW-Empfang mit Batteriegeräten von DIPL. ING. W. SPARBIER

Entwicklung der Batterieröhren - Übersicht über moderne Batterie-Empfänger – Miniatur - Batterieröhren mit Heizfäden für 50 mA – Technische Daten, Beschreibung und Schaltungshinweise für die Röhren DK 92, DF 91, DAF 91, DL 92, DL 94 und DC 90 - Die Abstimmanzeigeröhren DM70, DM 71 - Miniatur-Batterieröhren mit Heizfäden für 25 mA

- Röhren DK 96, DF 96, DAF 96, DL 96 und DF 97 - Empfänger-Beschreibungen — Beschreibung von praktisch erproblen Scholtungen für AM-Batterie-Empfänger und AM/FM-Empfänger für Batterie- und Wechselstrombetrieb und mehr.

(8°) 217 Seiten, 221 Abb., 6 Falttafeln Kart. DM 12,-

Erhältlich nur im Buchhandel WEITERE BUCHER IM KATALOG 1958/59

DEUTSCHE PHILIPS GMBH VERLAGS-ABTEILUNG . HAMBURG 1

TYPE FSG 200 M

Zur Reparatur und Prüfung von Fernseh- und UKW-Empfängern und Antennenverstärkern. Leicht transportabel. Zukunftssicher, da mit UHF-Wobbler Type W 800 M für Band IV und V verwendbar.

Für Fernseh-Service außerdem lieferbar:

Antennentestgeräte und Röhrenvoltmeter.

ARTHUR KLEMT, Oldning bei München

Roggensteiner Straße 5

DM 1820.mit Zubehör

Hören SIE GERN MUSIK?

Vervollständigen Sie Ihre Sammlung mit den neuen

rumänischen Schallplatten!

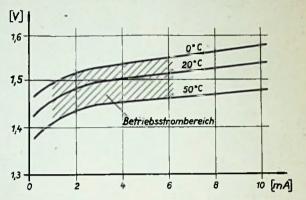
Die wertvollsten Volksschöpfungen sowie die Werke der rumänischen Musikschaffenden sind auf Schallplatten aufgenommen.

Symphonien, Suiten, Arien, Lieder und Volkstänze,Unterhaltungs-und Tanzmusik

ALLEINVERKAUF:

CARTIMEX Bukarest, Rumänien

Postfach 134 - 135


Stabilisierung und Siebung kleiner Spannungen

mit

Stabilisationszellen Typ STABILYT 1,5/10

Ein modernes Bauelement für den Kleingerätebau und für viele Anwendungsfälle in der Fernmelde- und Verstärkertechnik u. a. bei Transistorschaltungen.

Stabilisationszellen einzeln oder in Kombinationen sind hauptsächlich zur Stabilisierung und zur Siebung kleiner Spannungen geeignet. Eine STABILYT-Zelle hat einen konstanten und sehr geringen, praktisch frequenzunabhängigen Wechselstromwiderstand.

Weitere Typen: STABILYT 1,5/150

1,5/300

1,5/600 Fordern Sie Prospekte an!

GEORG NEUMANN

Laboratorium für Elektroakustik G. m. b. H.

Zweigstelle HEILBRONN/N., Weststraße 47 Telefon: 2035

ANTON KATHREIN · ROSENHEIM (OBB.)

**Alteste Spezialfabrik für Antennen und Blitzschutzapparate

Heft 22 / FUNKS CHAU 1958

Er schafft die Verbindung

nnerhalb des westlichen Verteidigungsbündnisses — ler NATO — spielt der Fernneldesoldat eine immer wichtiger werdende Rolle. Jungen, technisch begabten und ausgebildeten Männern, lie außerdem sprachliche Vorbildung oder Eignung nitbringen, bietet die Fernneldetruppe eine interesante Laufbahn mit Verwenlungsmöglichkeiten im Inund Ausland.

Ohne Fernmeldeverbindungen ist keine Truppenführung möglich. Sie sind die Nervenstränge der Armee.

- ·Fernmeldeeinheiten der Divisionen und Armeekorps
- ·Fernmeldeeinh<mark>eiten in hohen</mark> alliierten Stäben
- ·Fernmelde-Aufklärungseinheiten
- Fernmeldeeinheiten der Territorialorganisation
- -Fernmelde-Versorgungs- und Instandsetzungseinheiten

geben aufgeschlossenen, wendigen, technisch interessierten jungen Männern Gelegenheit, unentbehrliche Helfer der militärischen Führung zu sein.

DIE BUNDESWEHR

stellt Freiwillige im Alter von 17 bis 28 Jahren ein. Bewerbungen sind an das zuständige Kreiswehrersatzamt zu richten. Interessenten erhalten nach Einsendung nachstehenden Abschnittes Merkblätter und Prospekte über die Fernmeldetruppe.

(Diesen Abschnitt ohne weitere Vermerke im Briefumschlag einsenden)

An das

Bundesministerium für Verteidigung (TFM 2/744) BONN, Ermekeilstraße 27

lch interessiere mich für die Offizier-/Unteroffizier- und Mannschaftslaufbahn* in der Fernmelde-Truppe und erbitte Merkblätter und Prospekte.

Name Vorname Geb. Datum

Schulabschl. Beruf

() Ort Straße Kreis

*) Zutreffendes unterstreichen

FUNKSCHAU 1958 / Heft 22

Interessante Informationen erhalten Sie von der deutschen SOUNDCRAFT-GENERALVERTRETUNG BERLIN, BINGER STR. 31. Verkauf nur über den Fachhandel. Wir vergeben Bezirksvertretungen an renommierte Großhändler.

Sonderangebot

9,5 cm/s Doppelspur (int.) Drucktastensteverung Prāzisionslaufwerk Außenläufermotor (Pabst) 2 Stunden Spieldauer Schmalfilmvertonung Bandzählwerk Aussteverungskontrolle 3-Watt-Endstufe Mithörkontrolle Lautstärke- und Klangregler

Ein Gerät mit bestechender Klangqualität

DM 298.- mit Leerspule und Diodenkabel

ELEKTRON Abt. Sonderverk. Weikersheim/Württ.

Zur Aufanhme geschützter Werke Genehmigung der Urheber erforderlich

KUNSTSTOFF-BAUTEILE

aus Spritzgußmaterialien

nach Zeichnung oder Muster für Elektronik und Rundfunk

BK-PLASTIC, RHEYDT, HERZOGSTRASSE

RALI LANG-YAGI-ANTENNEN

Jetzt auch für Fernsehen in schwlerigen Gebieten Der Erfolg ist enorm 16 Elemente, mehr denn 21/2 Lambda lang hochohmiger Foltdipol Bruttopreis DM 140.00

Verkaufsbüro für RALI-Antennen WALLAU/LAHN Schließfach 33, Fernsprecher Biedenkopf 8275

Feintriebe und -Meßgeräte-Skalen f. Industrie v. Amateure in Präzislonsausfhrg.

> Ing. Dr. Paul Mozar Fabrik für Feinmechanik DUSSELDORF, Postfach 6085

Liefert alles sofort und preiswert ab Lager

Lieferung nur an Wiederverkäufer!

Preiskatalog wird kostenlos zugesandt!

BANDFILTER Philips Universal-Mikro-ZF-Filter AM 446 - 468 kHz DM 1.50 dito FM 10,7 MHz DM - .80

3 weitere Spulenbecher für Eingang und

HAMBURG - GR. FLOTTBEK

Grottenstr. 24 · Ruf : 8271 37 · Telegramm-Adr.: Expreßröhre Hamburg

US-Geräte

24-Volt-Zerhacker

(Mallory Typ M 1503 S, Sig. Corp. No. 3 H 6690-26 für Amplifier Power Supply AM-598/U) nicht synchron. 19,5-32 V, 2 Amp., 115 (± 7) Perioden, 37 mm Durchmesser, 75 mm hoch. 7 Stifte. Neu, in Original Fabrik-Verpackung. Nur DM 2.50 Großzügige Mengenrabatte; 20 000 Stück auf

Oscillator O-2/FRC 3 feste, abstimmbare Frequenzen 400, 1000 und 1800 Hz. Eingebauter

Netzteil für 110 V Wechselstrom. Röhren: 2 × 6 X 5 GT, 1 × 5 Y 3 GT. In gutem Zustand, betriebsklar. Preis ohne Röhren DM 29.-

Empfänger, Link 1498 R (70-100 MHz). Quarzgesteuerter UKW-FM-Dreifachsuper. ZF 5 MHz und 456 kHz. Röhren: 6×7 W 7, 2×7 C 7, 7 S 7, 2×7 A 6, 7 F 7, 7 A 4, 7 C 5 und 7 Z 4. Eingebautes Netzteil 115 V/50 Hz. Maße 480 \times 215 \times 190 mm. In gutem Zustand. Preis mit Schaltung, ohne Röhren und Quarze DM 98 .-

Sender, Link 1498 T (70-100 MHz) Quarzgesteuerter UKW-FM-Sender mit 50 W Output. Röhren: 7 F 7, 7 W 7, 3 × 7 C 5 und 815.

Benötigte Spannungen (von 1498 P) 6,3 V Uf und 500 V Ua.

Maße: 480 × 170 × 190 mm. Quarz f:32. In gutem Zustand. Preis mit Schaltung, ohne Röhren und Quarz

Netzgerät, Link 1498 P. Netzgerät zum Sender 1498 T. Eingang 115 V. zgerat, Link 1498 P. Netzgerat zum Sender 1496 I. Einigang 113 V.
50 Hz., 210 W. Ausgang 500 V, 220 mA; 6,3 V, 3 A. Röhren: 2 X
816 oder 2 X 5 Z 3. Maße: 480 X 180 X 270 mm. Gewicht ca.
20 kg. Gestellbauweise. In gutem Zustand. Preis ohne Röhren
DM 48.—

Gehäuse, Link für obige Link-Geräte. Eignet sich auch zum Einbau von anderen Geräten. 87,5 cm hoch, 53,5 cm breit, 28 cm tief. Aus starkem Blech. Große Tür vorne und hinten mit eingebau-tem Sicherheitsschloß. Schlüssel wird mitgeliefert. Lack z. T. beschädigt, sonst in gutem Zustand. Einmalige Gelegenheit Nur DM 19.-

REICHE AUSWAHL AN QUARZEN zu niedrigsten Preisen. Auftragsmindesthöhe DM 5.-. Versand erfolgt per Nachnahme.

RADIO-COLEMAN . Frankfurt/Main . Münchener Strafte 55 Telefon 33 39 96

internationale Verkaufserfolg

Schont die Augen und vermindert Ermüdungserscheinungen

Fernsehen, ein beglückendes Erlebnis mit

Telelux - Fernsehbrille

Endverbraucherpreis DM 4,80

Aileinhersteiler: Radike & Wahl G. m. b. H. - Oplische Fabrik, Abt. 11 - Hannever

Transistor-Erfindungen

Stabilisierung der Oszillatorfrequenz gegen ther-mische Instabilität auch für Kurz- und Ultrakurzwellen durch geeignete Stromversorgungsschaltung.

Stabilisierung der Abstimmfrequenz im Zwischenfrequenzverstärker gegen Regelverwerfur durch dosierte Emitterrückkopplung, die auch Regelverwerfungen

Hohe Trennschärfe und

Hohe Stufenverstärkung gewährleistet.

Stabilisierung des Rückkopplungsgrades durch Hf-Gegenkopplung

Stabilisierung der Oszillatorfrequenz gegen Mitzieheffekte bei höheren Frequenzen, bes. KW und UKW, durch spezielle Mischschaltung und neuartige Entkopplung.

Stabilisierung der Neutralisation durch Vergrößerung der Rückwirkung mittels äußerer Schaltmittel.

Harmonische Regelung auch von 3 oder 4 Transistoren durch besondere Auslegung der Regelschal-tung und neuartige Regelspannungsverstürkung unter Verwendung der Hf-Transistoren.

Hohe Eingangsspannung zulässig (Auto- und Kurzwellenempfänger) durch Regelung jeder Stufe und Basisschaltung plus leichter Rückkopplung für die Vorstule.

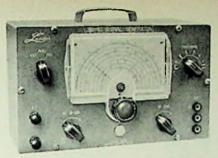
Gesamt-Lizenzgebühren für Hochleistungsempfänger (kommerzielle Goräte, Export, als Autosuper bes. für Kleinstwagen und Mobile geeignet) DUT Ca. 2 %.

Patentanmeldungen, z. T. nur noch bedingt neu. Unionsprioritäten verfallen Ende Jan. - Anfang März 1959.

Biete Obernahme des Anspruches auf die Auslandsrechte, gegebenenfalls auch die Inlandsanmeldungen, gegen angemessene Beteiligung an den Nettoerträgen. Im Ausland Zusammenfassung einzelner Anmeldungen möglich.

WALTER LOOS, Nürnberg 5

Juvenellstralle 17


liefert preisgünstig

- fabrikneue Markenröhren
- Westdeutsche Marken-Elkos
- Erste Qualität
- 6 Monate Garantie
- Prompte Lieferung

Verlangen Sie unsere Preislisten TELEKA Mü. 2, Elvirastr. 2 - Tel. 60958

ALLGEH'A'USE Industrie **HAMBURG** HAMBURG-ALTONA - CLAUSSTR.4

Messender LSG-10

120 kHz - 260 MHz

für 220 Volt Wechselstrom

DM 188.-

KEW Meßinstrumente unser Schlager

TK-30 A 1000 Ω/V. 15/150/750 V = 15/150/750 V ~ 150 mA = 100 kΩ

Maße: 98 × 54 × 35 mm

DM 24.50

KEW TK-70, 2000 Ω/V.

10/50/250/500/1000 V = 10/50/250/500/1000 V ~ 0,5/25/50 mA = 10 kΩ/1 MΩ - 20 ~ + 22 dB +20 ~ + 36 dB Maße: 140 × 92 × 38 mm

DM 44 --

KEW TK-90, 20 000 Ω/V

 $10/50/250/500/1000 V = .10/50/250/500/1000 V \sim$ $0.05/2.5/25/250 \text{ mA} = .5/50/500 \text{ k}\Omega/5 \text{ M}\Omega$ -20 ~ + 5 und + 5 ~ + 22 db

Maße: 108 × 162 × 51

DM 94.-

Es handelt sich um fabrikneue Importware zu äußerst günstigen Preisen. Die Lieferung erfolgt per Nachnahme. Bei Nichtgefallen Rücknahme einwandfreier Ware binnen 8 Tagen bei voller Bar-Rückvergütung. Erfüllungsort und Gerichtsstand Hamburg-Altona.

Großhandlung HEINE KG

Hamburg-Altona Palmaille 50, Telefon 427079

Stromlose Radio - Kleinanlagen in neuzeitlicher Form

WERCO-RAKETE
mit Germanium-Diode und induktiver Eisenkern-Abstimmung. Lautstarker Empfang mehrerer Sender
möglich. Incl. Antenne. Erdieltung
und Kristall-Ohrhörer 16.50

WERCO-LUCKY in Armbanduhrenform m. Ger-manium-Dlode und induktiver fisenkern-Abstimmung. Emp-fang mehrer. Sender möglich.
Besondere Lautstärke. Inkl. Antenne, Kristall-Ohrhörer

WERCO-JONNY
mit Diode, Transistor, Antenne u.
Ohrhörer, Empfang auch welter
entfernter Sender möglich.
Größe: 90 × 70 × 35 mm
Im Einzelkarton: 23.58

NORIS-S-Tasten - KW. Spulensatz

Spulensatz
Zum Bau eines KW-Vorsatzgerätes (Converter), Anschluß an
jeden Radioapparat für das 10 –
15 – 20 – 40 – 80-m-Band.
Besondere Empfangsielstg, durch
weiteste Spreizung der Kurzweilenbänder mit 1 Zwischenkreisfilter, 1 Bandfilter, 1 Saugkreis, 1 Spule für Telegrafie-Überlagerer mit Bauenleitung und Schaltplan
Spezialdrehko für KW-Spulensatz
4.63
Spezialdrehko für KW-Spulensatz
4.63
Verlangen Sie Prospekte – Rabatte für Groß- u.
Einzelhandel auf Anfrage.

WERNER CONRAD, Hirschau/Opf., F 142

ETZEL-ATELIERS

ABT. ETONABARS

ASCHAFFENBURG - TELEFON 2805

FUNKSCHAU 1958 / Heft 22

Transistoren NF-Transistor wie GFT 20, OC 802, OC 70 ... NF-Transistor wie GFT 21, OC 804, OC 71 ... Transistorpaar für Gegentakt-Endstufe, wie 2 X OC 604 spez., 2 X OC 72 3.95 4.75 HF-Transistor wie GFT 45, OC 612, OC 45 HF-Transistor wie GFT 44, OC 613, OC 44 Leistungs-Transistor 4 Watt, wie GFT 2006 .. 12.-Leistungs-Transistor 8 Watt, wie GFT 4012 .. 13.-Keinstbautelle für Transistor-Schaltungen preisgünstig und in großer Auswahl! Beispiele: Treibertrafe für 2 × OC 72 4.75 Ausgangstrafe für 2 × OC 72 4.75 Kristall-Miniaturhörer mit Zuleitung 4.75 Super-Spulensatz (MW): Ferritantenne, Osz-Spule, 3 ZF-Filter, Schaltbild, kompl. 16.50 Miniatur-Lautsprecher 70 @ × 30 mm 10.50 Desgl., 41 × 41 × 25 mm 12.90 Gehäuse (Plastik) z. B. 112 × 92 × 40 mm 1.30 Importröhren mit Garantie, spottbillig! z. B. EL 41, EL 84, EF 80, EF 89 nur Verlangen Sie kostenlos unsere Versandlisten! RADIO SUITR

Funkfernsteverungsanlagen

Sender und Empfänger, modu-liert und unmoduliert. Betriebs-fertig und in Bausatzform. Frequenzmessor- v. Modulator-

Verlangen Sie Angebote "Fern-steuerung"!

München 15 RADIO-RIM Bayerstr. 25

ERNSPRECHANLAGEN

7 Sprechstellen für Internen Betrieb 2 – 7 Sprechstellen 2 Sprechstellen 2 Sprécastellen DM 25.—
Jede weltere Sprechstelle DM 25.—
Erweiterungsmöglichkeit bls 7 Sprechstellen. Stromquelle norm. Taschenbatt. oder das dafür passende

NETZSPEISEGERAT

Primar 110/220 V, 50 Hz, Sek. 6-8 V Leistung 0,1 Amp. Fordern Sie Listen an!

DM 28.50

WERCO, Hirschau/Opf., F119

Potentiometer, Ø 22 mm, Hochohm-Werte lin, und log., bls 16 MQ, auch mit 4. Abgriff.

NEU! Schichtpotentiometer

30,50 oder 100Ω , als Regler f. Zweitlautspr., preisaunstia.

Metallwarenfabrik Gebr. Hermle

(14b) Gosheim/Württ.

Radio-RÖHREN sowie-Ersatzteile aller Art

liefert Ihnen zu besonders günstigen Preisen

MERKUR-RADIO-VERSAND

Berlin-Dahlem, Amselstraße 11/13

Fordern Sie kostenios unsere neueste Liste an

Tonbandgeräte

Amateurbedarf

Hameln, Osterstr. 36

AEG/Telefunken, Philips, Saja, Uher

Tonbänder, Phono- und Radio-Geräte Kleinst-Transistor-Empfänger

Radioröhren und Kleinteile interessante Meßgeräte

Elektro-Geräte aller Art zu günstigen Preisen

RADIO-CONRAD

Großhandel

Berlin-Neukölln - Hermannstraße 19 Ruf 62 22 42

Suchen gegen Kasse zu kaufen:

200	Röhren	4473	1 5	Pāhran	AS 1000	1	
50	**	100 TH	25	**	RL 4,8	۲	12
10	,,	250 TH	10	,,	RFG 3		
50	"	LG 10 STV 75/15		"	829 B		
80	"	STV 75/15					

Kaufen auch andere Spezialröhren, erbitt. Angebot

Lorenz-Elektronik Roth bei Nbg., Hauptstr. 4

Sie machen das Rennen, mit unserem Sonderangebott

Eine kleine Auswahl aus unserem Angebot 458 ECC 82 2.70 2.65 EABC80 2.90 EL B4 2.70 EAF 42 EBL 1 ECC 81 2.80 4.20 EF 41 EF 80 PL 82 PL 83 2.70 EL 41 2.90 PY 82

Fordern Sie noch heute unseren Sonderprospekt 4'58 für Großhandel und Großverbraucher an. Versand an Wiederverkäufer per Nachnahme.

F. Westerheide, Dortmund, Karl-Marx-Str. 21/1

RADAR-KO

(gebr. US-amerik, Fabrik.) m. eingeb. Impuls-Magnetron Raytheon RK2J51 (neu) Frequenzbereich v. 8500 - 9600 MegaHz m. Austausch-Magnetron Raytheon 725 A 9000 MegaHz (gebr.) mit kompl. Hohlleiter-Antenne (neu) Neuwert: ca. 40 000 DM für nur 7500 DM umständehalber zu verkaufen. Angebote unter Nr. 7295 D

Reparaturen

in 3 Tagen gut und billig

LAUTSPRECHER SENDEN/Jller

Preiswerte Vielfachinstrumente

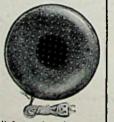
solide gearbeitet, formschon, for = und ~ 1000 Ω/V m. Buchs. 42.50 2000 Ω/V m. Scholt. 52.-M. HARTMUTH ING.

MeBrechnik - Kamburg 36

Waren-Eingangs-

Bücher für den

Radiohandel


SONDERANFERTIGUNGEN .

	GIODE	*^							
Einphasen-Mantel-,	MT4-22	5- 1500							
Einphasen-Kern- und	KT4-24	200 - 10000							
Drehstrom-Trafos	D 122-3510	100 - 14000							
werden schnell und	preiswert ange	fertigt. Bitte							
fordern Sie die Preisliste für die Berechnung von									
Transformatoren in Sonderfertigung mit Größen-									
angabe an:									

Hans W. Stier, Berlin-SW 61, Friedrichstraße 231

ERPEES"-Kissenleisesprecher ,ERPEES"-Kopfhörer

"ERPEES"-Lautstärkeregler

llefert preiswert:

Elektrotechnische Fabrik Schwenningen a. N.

Doppelkopfhörer WERCO 2 x 2000 Ohm Stahlbügel mit Plastiküberzug

1,30 m Schnur netto 4.50

5 Stück 4.20, 10 Stück 3.95 100 Stück 3.50

	Stück	Stück				
Kippausschalter						
l polig		32.50				
2 polig	58	52				
Kippumschalter						
1 polig	45	39.50				
2 polig	68	62.50				
Drehausschalter						
1 polig	50	44.50				
2 polig	95	85.50				
Drehumschalter						
1 polig	55	49.50				
2 polig	1	89.50				
Verlangen Sie ausführliche						
Lagerliste 8 45.						

WERCO Hirschau/Opt.

FUNK-FER NSTEUERUNGEN

alle Zwecke Quarze 27,12 MHz DM 17. -

für

Westfunk Apparatebau KG. St. Goor/Rhein

Gleichrichter-<u>Elemente</u>

und komplette Geräte liefert

H. Kunz K. G. Gleichrichterbau Berlin-Charlottenburg 4 Giesebrechtstraße 10

RADIO-VERLA GONFREN Postfach 354 Gelsenkirchen

Universal-Ohmmeter
1 \Omega - 2 Tera \Omega
(0,0) \Omega - 10 \T \Omega)
W. FROST Meßgerätebau 23) Osterholz-Scharmbeck

REKORDLOCHER

In 11/2 Min. werden mit dem REKORD-LOCHER einwandfreie Löcher in Metall und alle Materialien gestanzt. Leichte Handhabung – nur mit gewöhnlichem Schraubenschlüssel. Standardgrößen von 10-61 mm Ø, DM 7.50 bis DM 35. – .

W. NIEDERMEIER - MUNCHEN 19 Nibelungenstraße 22 - Telefon 67029

Suche Stabgleichrichter

mögl. Siemens E1500 oder E3000/C0,5

Angebote an Fa. Dipl.Ing. Kessinger Bayreuth Meistersingerstraße 11

Wehrmachts - Ladeschrank

mit eingebautem Umformer Eingang 380/660V, 2200W Ausgang regelbar 6-35V 0-15 A, 1500 W Preis 750 DM zu verkaufen.

Zuschriften unt. Nr. 7287 S

Wir suchen:

8298, C3g, IAD4, RL12,T1, LG10, 5899, 5718, 5636, 5639, 5678

Radio-Müller/Elektron München 22, Liebherrstroße 4

RÖHREN-BLITZVENTAMA - Radio - Elektro - Geräte - Teile Fernseh Händler verlangen 24-seitigen Katalog

AF7 - 3.10 AL4 - 4.10 EBL1 - 4.30 ECH42- 3.20 PLB1 -ECH 81 - 3.20 EF86 - 3.95 Sonderangebot: PCC88 - 7.80 6 BE 6 - 2.70 EM34 - 3.70 EM85 - 4.50

Nachnahmeversand an Wiederverkäufer HEINZE, Großhalg. Coburg, Fach 507, Tel. 4149

Heft 22 / FUNKS CHAU 1958

WEGA

Im Zuge der Erweiterung unserer Fernsehgeräte-Fertigung suchen wir:

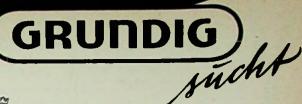
Fertigungs-Ingenieur Leiter des Meßgeräte-Labors Prüffeldleiter

Wir bieten: Angenehme Dauerstellung, gute Bezahlung, Aufstiegsmöglichkeiten. Bei der Beschaffung von Wohnungen sind wir behilflich.

Wir wünschen: Erfahrene Mitarbeiter mit Verantwortungsbewußtsein, Initiative und soliden Fachkenntnissen.

Bewerbungen m. Lebenslauf (handschriftlich), Zeugnisabschriften, Angabe des möglichen Eintrittstermins erbittet

WEGA - RADIO . STUTTGART . Postfach 95



Hollander, 21 Jhr., deutschsprechend, Mittelschulreife, Diplom als Radiomonteur-Assistent beim Militärdienst, im Studium zur Erlangung des Diploms als Radiomonteur, sucht Stelle als Gehilfe in einem rundfunktechnischen Betrieb oder Fachgeschäft.

Zuschriften unter Nr. 7286 R erbeten.

Ja. Fernsehtechniker

mit guter Erfahrung in der Elektronik, Impuls-, HF- v. NF-Technik sucht sich zu verändern mögi. I. Raum München, Fachschulbildg, und erstkl. Zeugn. vorhanden. Angeb. unt. Nr. 7297 Ferb.

für das Tonbandgeräte-Werk Bayreuth

Rundfunkmechaniker

mit industrieller od. handwerklicher Ausbildung.

In dieser modernsten Tonbandgeräte-Fertigung der Welt finden auch junge Mechaniker, die ihre Lehre erst kürzlich beendet haben, interessante, vielseitige Aufgaben und außergewöhnlich gute Aufstiegsmöglichkeiten.

Oberdurchschnittliche Bezahlung, freundliches Betriebsklima und eine zusätzliche Altersversorgung erwarten Sie.

Bewerben Sie sich bitte bei der Personalabteilung der GRUNDIG-Radio-Werke, Werk Bayreuth (7).

GRUNDIG WERKE

HAUPTVERWALTUNG FÜRTH/BAY.

Rundfunkmechaniker Meister

staatlich geprüft, mit großen Erfahrungen in der Reparatur von Fernseh- und Radiogeräten, z. Zt. ungekondigt in leitender Position eines großen deutschen Unternehmens, sucht sich zu verändern. Eigener PKW und nach dem neuesten Stand der Technik eingerichtete Fernsehreparatur - Werkstätte vorhanden. Angebote ols Lelter einer Filiale oder Teilhaberschaft eines bereits bestehenden Unternehmens bevorzugt. Auch Ausland angenehm. Zuschriften erbeten unter Nr. 7296E

TRANSFORMATOREN

Serien- und Einzelanfertigung aller Arten Neuwicklungen in drei Tagen

Herbertv.Kaufmann

Hamburg - Wandsbek 1 Rüterstraße 83

PPP 20. Funkschau 2/57, RPB Nr. 85 Ubertrager M 85 symmetr. 2xEL 34 DM 16.—
Hetztrafe M 102 b depp. Anade, 6,3 V - 5 A
DM 24.—. PPP 15. Ubertr. M 74 symmetr.
2 xEL 84 DM 14.25. Hetztrafe M 85 b depp.
Anade, 6,3 V - 4 A DM 19.80.
Ultralinear-Ubertr. 30 - 20 000 Hz. 6 2
Gegenkoppi. 17 W M 85 2xEL 84 Rαα = 8 kΩ U a 300 V S. 5 Ω,
15 Ω υ. 100 V DM 22.50. 35 W M 102 b 2xEL 34 Rαα = 3,4 kΩ
Ua 375 S. 5Ω, 15Ω υ. 100 V DM 34.50. Netztrafes und Drossela
days of Adrigue Managarythotte.

G. v. R. Lorenz, Roth b. Nürnberg • Trafobau

Radio-Fernsehtechniker

Abteilungsleiter in der Rundfunkindustrie in ungekündigter Stellung tätig, speziell für Elnbau, Band, Prüffeld u. Service, 34 J.verh.m.K.Pkw-Kom. sucht sich im Raum Obb. aus familiären Gründen in Industrie oder Handel zu verändern. Angebot mit entsprechender Wohnung bevorzugt. Zuschrift unt. Nr. 7299 H an den Franzis-Verlag

Akku-Ladegerät

anschlußfertig für 2-4-6V Ladestrom bis 1,2 Amp. für Kofferempfänger Motorrad und Auto, zum Preise von DMW 58. - brutto lieferbar.

KUNZ KG. Abt. Gleichrichterbau Berlin-Charlottenburg 4, Giesebrechtstr. 10

echte Hi-Fi-Qualität, 6 Eingänge: Mi I, Mi II, Ru, TA, Tonb., Guitarre

Ein Gerät der vielen Möglichkeiten I Lieferung nur über den Fachhandel

SPIELDIENER, Elektronik-Labor, Nürnberg, Dammstr. 3

WO werden Kenntnisse und Geist benötigt?

Betriebsleiter und Entwicklungsingenieur

eines mittleren Industriebetriebes, 37 Jahre, unabhāngig, u. a. abgeschlossene Ausbildung als Uhrmacher und Dreher, Bordfunkerschein, Blindflugschein, Führerschein Kl. III.

Fachgebiete: Elektronik

Mechanik – Feinwerktechnik NF – HF – UHF – VHF Maschinenbay in Theorie und Praxis

SUCHT Lebensstellung, wo Initiative, Ober-durchschnittliches Können und gutes Auftreten verlangt werden (Elektronik und HF bevorzugti).

Angebote mit kurzer Angabe des Aufgabenbe reichs erbeten unter Nr. 7285 P.

FUNKE-Oszillograf

für den Fernsehservice. Sehr vielseitig verwendbar in der HF-, NFund Elektronik-Technik. Röhrenvoltmeter mit Tastkopf DM 169.50. Röhrenmeßgeräte, Picomat (pF-Messung) Prospekte anfordern.

MAX FUNKE K.G. Adenau/Eifel Spezialfabrik für Röhrenmeßgeräte

Eine verschworene Gemeinschaft zwischen Chef und Mitarbeitern - heutzutage?

Jawohl, das gibt es bei uns. -Zu unser aller Entlastung möchten wir in unseren Kreis noch einen jüngeren Kollegen für den Werkstatt-Innendienst aufnehmen, einen patenten aufgeweckten

Radio- und Fernseh-Techniker

Gebiet: Bergisches Land. (Zimmer vorhanden!) Das Interessiert Sie? - Dann schreiben Sie uns bitte noch heute unter Nr. 7284 N

Jüngerer, tüchtiger

Rundfunk-Fernseh-Techniker

von Fachgeschäft in Schleswig-Holstein gesucht. Führerschein ist erwünscht. Zimmer kann besorgt werden. Bewerbungen m. Gehaltsansprüchen sind zu richten an: Musik- und Photohaus Heinz Sträter Bad Oldesloe, Mühlenstraße 8

Universitäts-Institut in Bonn sucht

zum Ausbau und zur Leitung der elekerwünscht, aber nicht Bedingung. Bewerbungen unter Nr. 7289 U

STELLENGESUCHE UND - ANGEBOTE

(13b) München 37, Karlstraße 35.

Junger Rundfunk-Fern-sehtechn, und Elektriker sucht neuen Wirkungskreis (evtl. Auslandsmon-tage). Angeb. unter Nr. 7292 Z

Rundfunkmechanik., 28 J., ledig, Führerschein Kl. 3, in ungekündigt. Stellung, möchte sich verändern. Angeb. unter Nr. 7290 V

Jüngerer Rundfunk-Tech-niker mit besonderem In-teresse für NF gesucht. Otto Börnecke, Dortmund. Ruhrallec 62

VERKAUFE

TONBANDER, neue Preise, neue Typen lie-fert Tonband-Versand Dr. G. Schröter, Karlsruhe-Durlach, Schinnrainstr. 16

Universal - Taschenmeß-gerät 5000 Ohm/V bei Gleich- und Wechselspan-nung, 27 Meßbereiche

Bayerstr. 25

Gelegenh. | Foto-, Film-App., Ferngläs., Tonfol.-Schneidger. Auch Ankf. STUDIOLA, Frankf./M-1

TONBANDAMATEURE ford, preiswerte Liste an. Scheideler, Kassel, Ro-thenditmolderstr. 23

Verkaufe äußerst billig en Block: nicht mehr benöt. Geräte u. Teile wie Tele-funken Sprech-Anl., Teff-fone, Verstärk., Lautspr., Tonsäulen, Ami-Röhren gebr., Gehäuse, Altgeräte, Koffer, Autoradios, Ba-stel-Einzelteile usw. Zu-schriften erbeten unter Nr. 7291 W

SUCHE

Suchgerät kurzfristig leihen gesucht. Angebo unter Nr. 7294 B

KLEIN-ANZEIGEN

Zifferanzeigen: Wenn nicht anders angegeben. laut ie Anschrift für Zifferbriefe: FRANZIS-VERLA

Rundfunk- und Spezi röhren all. Art in grund kleinen Posten widen laufend angeka den laufend angeka Dr. Hans Bürklin, Si zielgroßhdl. Mündnen Schillerstr. 27, Tel. 55 03

Kaufe Röhren, Gleichri ter usw. Heinze, Cobu Fach 507

Labor - Instr., Kathog phen, Charlottenbg. & toren, Berlin W 35

Radio - Röhren, Spezi röhr., Senderöhr. geş Kasse zu kauf. gestu SZEBEHELYI, Hambu Gr. - Flottbek, Grott straße 24

Röhrenangeb. bitte Tulong GmbH., Münch 15, Schillerstr. 14. T. 593

Röhren aller Art ka geg. Kasse Röhr.-Müll Frankfurt/M., Kaufun Straße 24

Radio - Röhren, Spez röhr., Senderöhren g Kasse zu kauf. gesu Intraco GmbH., M chen 2, Dachauer Str.

Resiposten übernin Atzertradio, Berlin SV

Suchen Restposten Ra und Elektro - Zubel Röhren, Widerstände 4 Watt. TEKA, Weid

Hans Hermann FRO: sucht ständig alle Er fangs- und Senderöhr Wehrmachtsröhr., Stat-satoren, Osz.-Röhr. u zu günst. Beding. Ber Wilmersdorf, Fehrbelli Platz 3, Tel. 87 33 93

Röhren-Angebote s erwünscht. Wir kau lauf. geg. Kasse. W Hacker KG., Berlin-Silbersteinstr. 5-7

Gleich- und Wechseispan-nung. 27 Meßbereiche einschl. Batterie u. Meß-schnüre nur DM 82.—. Verlangen Sie Angebot "Testgerät 630". Teilzah-lungsmöglichkeit. RADIO-RIM, München Baverstr. 25

Rundfunkmechaniker - Meister

Rundfunkmechaniker-Meister

gesucht in seriöses, bewährtes Geschäft (modernen

Neubau) in der Schweiz. Gut beleumdete Techniker,

Alter 25-30 Jahre, senden Offerte mit Photo und

Lohnanspruch, sowie Eintrittsdatum unter Nr. 7281 K

tronischen Werkstatt. Bezahlung nach TOA VI. Erfahrung in Impulstechnik

LEHNER & KUCHENMEISTER KG

Rundfunk- und Fernseh-Fachgroßhandlung sucht zum baldmöglichsten Eintritt

Rundfunk- und Fernseh-Mechaniker eventuell Meister.

Bewerbungen mit den üblichen Unterlagen erwünscht nach Stuttgart W., Silberburgstraße 119 A.

Wir bieten erfahrenen

RUNDFUNKMECHANIKERN

angenehmen Arbeitsplatz, selbståndige Arbeit, günstige Arbeitszeit (5-Tage-Woche) und einen Anfangsstundenlohn von DM 2.31. Persönl, wie schriftl. Bewerbung bei AFEX Personalbüro, Wiesbaden-Biebrich, Pfälzerstraße 3, Telefon 60871, App. 56

1 tüchtigen Rundfunktechniker

Franzis-Verlag München.

für die Instandsetzung von Auto-Radio-Geräten

Wir suchen zum baldmöglichen Eintritt

Bewerbungen mit üblichen Unterlagen erbittet

PAUL SOEFFING KG, Düsseldorf Mindener Straße 12-18* 786221

Ing. und Rundfunkmechanikermeister Eiektro-Radio-Fernsehfachmann

kaufm. u. techn. Aufga-bengeb. Angeb. u.7293A

BOSCH

Kauf-Pacht oder Übernahme der Geschäftsführung eines Fachgeschäftes oder Produktionsbetriebes

Zuschriften unter Nr. 7298 G

Bekannter Betrieb d. Elektro-Physik in Köln sucht per sofort od. später:

mehrere | Ongere

Rundfunkmechaniker

Elektromechaniker

für die Beschaltung v. HF-Geräten.

Erfahrungen in der impulstechnik erwünscht, jedoch nicht Bedingung.

Schriftliche Bewerbung erbeten unter Nr. 7288 T

Junger, aktiver Diplom-Kaufm. aus der Elektro-branche sucht in Mün-chen z. Gründung eines neuartigen Fernsehver-triebs- u. -servicedien-stes i Rundfunkmeistero. Ing. als Partner. Kapital und Fahrz. vorh. Grund-vorauss. Ist d. Trenng. v. kaufm. u. techn. Aufga-Vorwärtsstrebender junger

in selbst. gutbez. Dauerstellung p. 1.1.59 oder später gesucht. Bei Elgnung Obernahme der Leitung der Werkstatt und des Kundendienstes

FS- und Rundfunktechniker

Funk- und Fernsehberater

Ing. Adolf Vogler

Offenbach - M., Frankfurter Str. 22

Wir suchen für unsere im gesamten Bundesgebiet unterhaltenen werkseigenen Filialen

tüchtige Rundfunk- und Fernsehmechaniker

(Techniker)

im Innen- und Außendienst, für sofort oder später.

Wir fordern: gediegene Ausbildung, gründliche Berufspraxis, Führerschein Kl. III

Wir bleten: gute Bezahlung, bei Eignung ausbaufähige Dauer-

Ausführliche Bewerbungen mit Lebenslauf, Zeugnisabschriften, Lichtbild und Einkommenswünschen erbeten unter Nr. 7272 Z

SIEMENS

Für unsere Kundendienst-Werkstätten in Nürnberg und Erlangen suchen wir zum sofortigen Eintritt mehrere

Rundfunk- und Fernseh-Mechaniker

Gute Aufstiegsmöglichkeiten werden geboten.

Persöni. Vorstellung erbeten, Montag mit Freitag von 8 bis 17 Uhr.

SIEMENS-ELECTROGERATE AKTIENGESELLSCHAFT ZWEIGNIEDERLASSUNG NORNBERG

Personalstelle - Nürnberg - Richard-Wagner-Platz 1

Der Erfolg des wirtschaftlichen Zusammenschlusses im Europa-Markt:

PREISSENKUNGEN!

Nützen auch Sie diese Vorteile.

Bitte fordern Sie mein Röhren-Sonderangebot 58/59 sowie Lagerliste 58/59 und Liste über Miniatur-Einzelteile an und prüfen Sie meine Leistungsfähigkeit.

Es lohnt sich wirklich bei mir zu bestellen.

FERNSEH - BAUKASTEN HELIOS II

Kombinierter Fernsehund Drucktasten Rund-funkempfänger UKW/M/ L. Die im Baukasten ent-haltenen Bauteile entstammen einem Original-

Industrie-Fernsohgerät mit Drucktasten-Rundfunk-teil Modell 1957. Es können hierzu Bildröhren 14, 17, 21 Zoll 70° u. 90° Ablenkung verwendet werden. Baukesten komplett ohne Bild-Rö. 365.—

Dito, jedoch mit Bild-Rö. 90° Ablenkung (Weitwinkel) 17 Zoll Dito, jedoch mit Bild-Rö. 90° Ablenkung (Weitwinkel) 21 Zoll 528.50

598. -

LOEWE-OPTA Fornsehgehäuse hochgl. poliert für 43 cm Bildröhre dto. für 53 cm Bildröhre 39.50 49.50

dto.

NSF-Kanalwähler

Modell 57, geschaltet mit

E 88 CC und PCC 85

dito, ohne Rö. geschaltet

Zeilentrafo m. Hochsp.-Teil 39.50 19.50 und EY 51 Ablenk-u, Fokusslereinh. 70° 29.50 Ablenkeinheit für Elektrostat 39.50 Fokussiereinheit 90°

Fernsehgleichricht. E 220 C 350 8.25 E 220 C 300 7.25 Fernsehmontage-Chassis vorgelocht, mit Röhren-fassungen, Lötleisten, Skalenantrieb, Skalen-schelbe und Beleuchtung, 460 × 450 mm 21.50 Preh-Einstellregler 2 M Ω und 3 M Ω je -.65 Bildröhrenfassung 1.20

Germaniumdiode -.80 7.50 12.50 Sicherheitsschutzscheibe f. 43 cm für 53 cm 12.50

Blendrahmen für 43 cm 9.95

MARKEN-PRISMENGLASER

MARKEN-PRISMENGLÄSER
Univ. verwendbar, hochw. opt.
Syst. vergüt. Opt., Mitteltrieb,
Knickbrücke, r. Okulareinstellg.
8 × 30 89.- Etui 9.50
8 × 40 145.- |
10 × 50 179.50 |
10 × 50 179.50 |
10 × 50 220.- |
7 × 35 Extra Weitwink. 265.-

Aufträge unter DM 10.- können nicht ausgeführt worden. Versand per Nachnahme zuzüglich Ver-sandspesen. Teilzahlung bis zu 12 Monaten bei Käufen über 50.-DM. Fordern Sie unsere Liste T 25

Hochl. Spitz. Super Chassis GRAETZ SINFONIA

21 Krs., 8 Valvo-Rö., mit 6 Mte. Garantie, umschaltbar 110 b. 240 V. (UKW - K - M - L - TA), 13 Drucktasten m. Klang-

register, Schwungrad-Duplex-Antrieb RAUMKLANG-SCHALLGRUPPE enth. 2 perm. Breitband-Lautspr., 6 W 240 X 280 mm (1 perm. Hochton, 1 perm. 249.50 RAUMKLANG-SUHALLGAGA ... 6 W. oval. enth. 2 perm. Breitband-Lautspr., 6 W. oval. 240 X 280 mm (1 perm. Hochton, 1 perm. Schall-kompressor mit Schallrohren), komplett geschaltet. mit Schallwand, bespannt ... 64.50 ORIGINAL-GEHÄUSE dazu, Edelholz, hochglanzpoliert, eingebaute UKW-Antenne, 680 X 405 X 19.50

DRUCKT, RAUMKLANG-SUPER-CHASSIS

DRUCKT. RAUMRLANG-SUPER-CHASSIS LOEWE PLANET 6 Rö. + 1 Scien, 6 AM + 10 FM, (U - M - L - TA), Ferritantenne. Br. 464, T. 210, H. 230 mm. Ohne Lautsprecher 189.50 Dazu 3 Hoch- und Tieftonlautsprecher 19.50

DRUCKT, RAUMKLANG-SUPER-CHASSIS LOEWE KOMET

LOEWE KOMET
Daten wie Planet, jedoch 4 Wellenbereiche, (U - K - M - L - TA).
Ohne Lautsprecher 192.50
Dazu 3 Hoch- und Tieftonlautsprecher 19.50
Passende Gehäuse zu Planet und Komet
Edelholz, hochgl. poliert 550 × 349 × 263 mm 12.50
PHONO-CHASSIS mit Duplo-Saphir, 4tourig,
220 V, 325 × 265 × 73 mm
49.50
dito als Koffer
Perm. Lautsprecher-Chassis oval
1 W 2.5 W 3 W 6 W
100 × 65 155 × 95 215 × 55 260 × 180
5.95
5.25 9.75
Ohrhörer, Kristall mit flexibler Schur

1 W 2,5 W 3 W 6
100 × 85 155 × 95 215 × 55 280 >
5.95 8.25 9.75 18.
Ohrhörer, Kristall mit flexibler Schnur dito, magn., 8 Ω, mit Spezialkilnkenstecker Doppeikopfhörer, 2 × 2000 Ω, Stahlbügel mit stik-Überzug, 1,30 m Schnur 280 × 180 16.50 4.20 4.50

FERNSPRECH-ANLAGEN als WAND-und TISCHTELEFON verwendbar. 2-7 Sprechstellen für internen Betrieb. 2 Sprechstellen jede weitere Sprechstelle 29.50

PRAKTISCHER HELFER IGF ANTENNENBAU FERNSPRECHER mit Ruftaste FERNSPRECHER mit Kutteste Für den Sprechverkehr A. u. B-Station erforderlich. Reichweite 300 m. Strom-quelle normale Taschenbatterie. 49.-NETZSPEISEGERÄT für HEIM-FERN-SPRECHANLAGEN passend 38.50

Relais für elektronische Aufgaben, Fernsieuerungen usw.

Kammrelais (Zwergrelais)

in hodwertiger Ausführung m. 4 Um-schalt-Kontaktsätzen für beliebige Ein-baulage, mit Schutzkappe. Wicklung 250 Ω, Ansprechteistung < 0,2 W, maxim. Schaldeistung 30 W, Kontakte: Silber, Gewicht: 20 g 6.85

dito, jedoch mit 2 Umschaltern, Wicklung: 52 Ω , Ansprechleistung: < 0.1 W, Gewicht: 15 g

dito, jedoch mit 2 Umschaltern, Wicklung: Ansprechleistung: < 1,0 W, Gewicht: 15 g

Sockel für Zwergrelais

Relais m. 1 Schrittumschalter f. eine max. Schaldeistung von 50 W in präziser Ausführung. Wicklung I: 2250 Ω, Wicklung II: 5650 Ω. Ansprechleistung: <0.3 W. 5650 Ω. Ansprechiessung. Gewicht: 65 g, Kontakte: Silber 6.-

dito, jedoch mit 2 Arbeitskontakten (erster Impulsein, 2. Impuls: aus)

GRUNER-Relais mit 1 Arbeitskontakt, Wicklung I: 1000 \(\Omega\), Wicklung II: 3000 \(\Omega\), Ansprechleistung: \(< 0.1 \) W. Gewicht: 35 g

SIEMENS-Flachgleichrichter, B 300 C 70 SIEMENS-Zerhacker, T. rls. 115 e, 6 V 5.75 Kofferstabantenne, f. Fernsteuerung geeig. 5.95 PRAZISIONS-DREHKOS, mit Planetentrieb 2.75

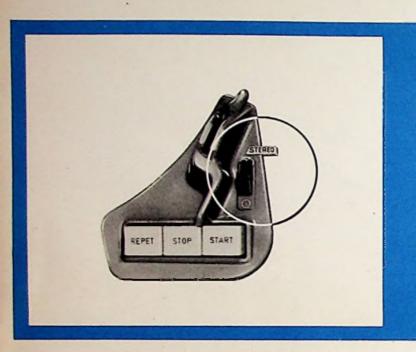
MAYER-Schalter 4 X 3, 1 Ebene 1.93 Transistor-Spulensatz, bestehend aus: 3 Zf-Spulen, 1 Oszillator, Kreis-Spule, Ferritstabantenne, Wel-lenbereich: 500-1600 kHz 19.80

Klein-Drehko zu ob. Spulensatz passend 4.95

Perm.-dyn. Kleinstlautsprecher 37 mm ϕ , 27 mm hoch, 150 mW

HF-Translator für ZF-Stufen bes. geeig.

Kleinleistungs-Transistor für Gegentakt-Endstufen Vorstufen-Transistor


7.50

TEKA, Weiden / Opf. Bahnhoistraße 343

bietet Ihnen

die DUAL-Stereo-Technik?"

DUAL hat

alle Stereogeräte von Grund auf den Anforderungen der Zwei-Komponenten-Abtastung angepaßt. Das DUAL-Stereo-Kristallsystem CDS 320 vereint in hervorragender Weise großen Übertragungsbereich bei hoher Übersprechdämpfung mit ausreichender Spannungsabgabe und geringer Rückstellkraft. Alle diese Vorteile ergeben gemeinsam die DUAL-HiFi-Stereophonie.

DUAL bietet

1004 D, Plattenwechsler-Chassis "stereosicher" DM 155.—

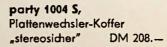
1004 D/KS 2, Plattenwechsler-Chassis

"Vollstereo" mit Stereo-Duplokopf KS 2 DM 169.—

mit Stereo-Taste

zur Kontrolle des Stereo-Effekts und Mittenjustierung der Stereo-Anlage während des Spiels, sowie zur Verbesserung der Wiedergabe monauraler Schallplatten durch Aufhebung der Tiefenschrift-Komponente:

1004 S, Plattenwechsler-Chassis "stereosicher" DM 161.—


1004 S/KS 2, Plattenwechsler-Chassis

"Vollstereo" mit Stereo-Duplokopf KS 2 DM 172.—

Party-Koffer

party 1004 SV,
Plattenwechsler-Koffer
mit Verstärker "stereosicher"
DM 338.—

Die stereosicheren party-Koffer können durch Zukauf folgender Tonabnehmerköpfe in Vollstereo-Geräte verwandelt werden:

KS 1 Stereo + M DM 30.50 KS 2 Stereo + M + N DM 32. —

Zuverlässig und verkaufssicher auch im Zeichen der Stereo-Technik

DUAL Gebrüder Steidinger, St. Georgen/Schwarzwald